Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiiang-Huei Jeng is active.

Publication


Featured researches published by Jiiang-Huei Jeng.


Oral Oncology | 2001

Role of areca nut in betel quid-associated chemical carcinogenesis : current awareness and future perspectives

Jiiang-Huei Jeng; Mei Chi Chang; Liang-Jiunn Hahn

Betel quid (BQ)-chewing is a popular oral habit with potential links to the occurrence of oral cancer. Many of the literature-based studies reveal that areca nut (AN) extract may demonstrate mutagenic and genotoxic effects, in addition to inducing preneoplastic as well as neoplastic lesions in experimental animals. Areca nut should, thus, be highly suspected as a human carcinogen. Toxicity studies relating to AN-contained polyphenols and tannins are not conclusive, with both carcinogenic and anti-carcinogenic effects being reported. The mutagenicity and genotoxicity of areca alkaloids has been detected by many short-term assays. However, their genotoxicity to oral fibroblasts and keratinocytes, the target cells of BQ, has not been identified. It would thus appear that AN toxicity is not completely due to its polyphenol, tannin and alkaloid content. The single agent which is responsible for AN carcinogenicity awaits further clarification. Reactive oxygen species produced during auto-oxidation of AN polyphenols in the BQ-chewers saliva, are crucial in the initiation and promotion of oral cancer. Nitrosation of areca alkaloids also produces AN-specific nitrosamines, that have been demonstrated to be mutagenic, genotoxic and are capable of inducing tumors in experimental animals. Arecaidine and AN extract are further suggested to be tumor promoters. Antioxidants such as glutathione and N-acetyl-L-cysteine can potentially prevent such AN-elicited cytotoxicity. Further studies are needed to delineate the metabolism of AN ingredient and their roles in the multi-step chemical carcinogenesis, in order to enhance the success of the future chemoprevention of oral cancer and oral submucous fibrosis.


Journal of Dental Research | 1994

Genotoxic and Non-genotoxic Effects of Betel Quid Ingredients on Oral Mucosal Fibroblasts in vitro

Jiiang-Huei Jeng; Min-Liang Kuo; Liang-Jiunn Hahn; Mark Yen-Ping Kuo

To understand the role of betel quid (BQ) in the pathogenesis of oral submucous fibrosis (OSF) and oral cancer, we used DNA damage, cytotoxicity, and cell proliferation assays to study the pathobiological effects of aqueous extracts of three BQ constituents [betel nut (Areca catechu, BN), inflorescence of Piper betle (IPB), and lime], one BN alkaloid (arecoline), and one BN polyphenol [(+)-catechin] on cultured oral mucosal fibroblasts. Extracts of BN and IPB induced DNA strand break formation in a dose-dependent manner. Extracts of BN and IPB, (+)-catechin, and arecoline decreased cell survival and proliferation in a dose-dependent manner. However, aqueous extract of lime (50-800 μg/mL) increased cell proliferation by 20-40%. These results indicate that BQ contains not only genotoxic and cytotoxic agents, but also compounds which stimulate cell proliferation. These compounds may act synergistically in the pathogenesis of OSF and oral cancer in BQ chewers. In addition, five anti-oxidants [glutathione (GSH), cysteine, mannitol, catalase, and superoxide dismutase (SOD)] were tested for their protective effects against the cytotoxicity of BQ constituents. GSH (1.95 and 2.6 mmol/L) and cysteine (4 and 8 mmol/L) prevented the arecoline-induced cytotoxicity. In contrast, mannitol, catalase, and SOD did not decrease the arecoline-induced cytotoxicity. These results indicate that thiol depletion, but not the attack of oxygen free radicals, could be the mechanism for arecoline cytotoxicity. GSH could also protect cells from the cytotoxicity of IPB extract. Increasing dietary intake of GSH-rich foods or dietary supplements of GSH may have chemopreventive potential to reduce BQ-associated oral lesions.


Food and Chemical Toxicology | 2009

Inhibitory effects of chitooligosaccharides on tumor growth and metastasis.

Kun-Te Shen; Mei-Huei Chen; Hing-Yuen Chan; Jiiang-Huei Jeng; Ying Jan Wang

Chitooligosaccharides (COS) are hydrolyzed products of chitosan and have been proven to exhibit various biological functions. The objectives of this study were to evaluate the anti-tumor growth, anti-metastatic potency and related pathways of COS extracted from fungi. In in vitro studies, we found that COS significantly inhibited human hepatocellular carcinoma (HepG2) cell proliferation, reduced the percentage of S-phase and decreased DNA synthesis rate in COS-treated HepG2 cells. Expressions of cell cycle-related genes were analyzed and the results indicated that p21 was up-regulated, while PCNA, cyclin A and cdk-2 were down-regulated. Moreover, we also found that the activity of metastatic related protein (MMP-9) could be inhibited by COS in Lewis lung carcinoma (LLC) cells. In in vivo studies, we found that COS inhibited the tumor growth of HepG2 xenografts in severe combined immune deficient (SCID) mice. In a LLC-bearing mouse tumor growth and lung metastasis model, COS inhibited tumor growth and the number of lung colonies in LLC-bearing mice as well as the lung metastasis, and it prolonged the survival time of the LLC-mice. These results suggest a potential anti-tumor growth and anti-metastatic potency of COS in cancer chemoprevention.


Journal of Biological Chemistry | 2004

The Induction of Prostaglandin E2 Production, Interleukin-6 Production, Cell Cycle Arrest, and Cytotoxicity in Primary Oral Keratinocytes and KB Cancer Cells by Areca Nut Ingredients Is Differentially Regulated by MEK/ERK Activation

Mei-Chi Chang; Hui-Lin Wu; Jang-Jaer Lee; Po-Hsuen Lee; Hsiao-Hwa Chang; Liang-Jiunn Hahn; Bor-Ryu Lin; Yi-Jane Chen; Jiiang-Huei Jeng

There are about 200–600 million betel quid (BQ) chewers in the world. BQ chewing is one of the major risk factor of hepatocarcinoma, oropharyngeal, and esophagus cancers in Taiwan, India, and Southeast Asian countries. Thus, the precise molecular mechanisms deserve investigation. We used cultured primary keratinocytes and KB cells, RT-PCR, flow cytometry, Western blotting, and ELISA to evaluate whether alterations in early gene expression is crucial in the carcinogenic processes of BQ. We observed the induction of c-Fos mRNA expression in human gingival keratinocyte (GK) and KB carcinoma cells by areca nut (AN) extract and arecoline. A maximal increment in c-fos gene expression was shown at about 30 min after challenge. AN extract (100–800 μg/ml) and arecoline (0.1–0.8 mm) also stimulated ERK1/ERK2 phosphorylation with a maximal stimulation at 5–10 min of exposure. Pretreatment by U0126 (30 μm), a MEK inhibitor, markedly inhibited the c-Fos, cyclooxygenase-2 (COX-2), and IL-6 mRNA expression of the KB epithelial cells. In addition, U0126 and PD98059 (50 μm) also decreased AN extract- and arecoline-associated PGE2 and IL-6 production in GK and KB cells. However, U0126 by itself arrested the cells in G0/G1 phase, but was not able to prevent AN- and arecoline-induced cell death or apoptosis. In contrast, U0126 enhanced the AN-induced apoptosis of KB cells. AN ingredients thus play a significant role in the pathogenesis of oropharyngeal cancer by activation of MEK1/ERK/c-Fos pathway, which promotes keratinocyte inflammation, cell survival, and affects cell cycle progression.


Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontology | 1999

Vertical root fracture in endodontically versus nonendodontically treated teethA survey of 315 cases in Chinese patients

Chiu-Po Chan; Chun-Pin Lin; Shih-Chang Tseng; Jiiang-Huei Jeng

OBJECTIVE The purpose of this study was to compare endodontically versus nonendodontically treated teeth with respect to clinical features, including patient age and gender and tooth types of vertical root fractures. STUDY DESIGN A total of 315 consecutive cases of vertical root fracture occurring in 274 Chinese patients during a 1 3-year period were reviewed. Age and gender, as well as tooth type and root distribution of vertical root fractures, were presented and compared in endodontically versus nonendodontically treated teeth. RESULTS Most patients (87%) had 1 fractured tooth; the others had 2 or 3 fractured teeth. Of all vertical root fractures, 40% occurred in nonendodontically treated teeth. In comparison with those in endodontically treated teeth, vertical root fractures in nonendodontically treated teeth tended to occur in patients with a higher mean age (55 years vs. 51 years) and were more frequent in male patients (78% vs. 58%). Vertical root fractures occurred in nonendodontically treated teeth more often in molars (84% vs. 53%), less often in premolars (16% vs. 33%), and seldom in anteriors (1 tooth vs. 27 teeth). CONCLUSIONS Vertical root fractures in nonendodontically treated teeth are not uncommon and comprise a large proportion of such fractures in Chinese patients. Differences between endodontically and nonendodontically treated teeth in patient age and gender, as well as in tooth types of vertical root fractures, were demonstrated.


Journal of Cellular Biochemistry | 2009

Interactive effects of mechanical stretching and extracellular matrix proteins on initiating osteogenic differentiation of human mesenchymal stem cells

Chien-Hsun Huang; Min-Huey Chen; Tai-Horng Young; Jiiang-Huei Jeng; Yi-Jane Chen

Human mesenchymal stem cells (hMSCs) are characterized by their abilities to differentiate into different lineages, including osteoblasts. Besides soluble factors, mechanical strain and extracellular matrix (ECM) proteins play important roles in osteogenic differentiation of hMSCs. However, interactions between them are still not fully understood. The purpose of this study was to investigate the combined effects of insoluble chemical and mechanical factors (ECM proteins vs. cyclic stretching) in driving hMSCs into osteogenic differentiation. To avoid the influence from osteogenic supplements, hMSCs were cultured in regular medium and subjected to cyclic mechanical stretching using a Flexcell Tension system (3% elongation at 0.1 Hz) when they were grown on substrates coated with various ECM proteins (collagen I (Col I), vitronectin (VN), fibronectin (FN), and laminin (LN)). Using alkaline phosphatase (ALP) activity and mineralized matrix deposition as respective indicators of the early and late stages of osteogenesis, we report herein that all of the ECM proteins tested supported hMSC differentiation into osteogenic phenotypes in the absence of osteogenic supplements. Moreover, cyclic mechanical stretching activated the phosphorylation of focal adhesion kinase (FAK), upregulated the transcription and phosphorylation of core‐binding factor alpha‐1 (Cbfa1), and subsequently increased ALP activity and mineralized matrix deposition. Among the ECM proteins tested, FN and LN exhibited greater effects of supporting stretching‐induced osteogenic differentiation than did Col I and VN. The ability of ECM proteins and mechanical stretching to regulate osteogenesis in hMSCs can be exploited in bone tissue engineering via approximate matrix design or application of mechanical stimulation. J. Cell. Biochem. 108: 1263–1273, 2009.


British Journal of Pharmacology | 2002

Inducing the cell cycle arrest and apoptosis of oral KB carcinoma cells by hydroxychavicol: roles of glutathione and reactive oxygen species

Mei Chi Chang; B J Uang; Hsyueh Liang Wu; Jang-Jaer Lee; Liang-Jiunn Hahn; Jiiang-Huei Jeng

Hydroxychavicol (HC; 10 – 50 μM), a betel leaf component, was found to suppress the 2% H2O2‐induced lucigenin chemiluminescence for 53 – 75%. HC (0.02 – 2 μM) was also able to trap superoxide radicals generated by a xanthine/xanthine oxidase system with 38 – 94% of inhibition. Hydroxyl radicals‐induced PUC18 plasmid DNA breaks was prevented by HC (1.6 – 16 μM). A 24‐h exposure of KB cells to HC (0.5, 1 mM) resulted in 54 – 74% cell death as analysed by a 3‐(4,5‐dimethyl‐thiazol‐2‐yl)‐2,5‐diphenyl‐tetrazolium bromide (MTT) assay. HC (10, 50 μM) further suppressed the growth of KB cells (15 and 76%, respectively). Long‐term colony formation of KB cells was inhibited by 51% with 10 μM HC. Pretreatment of KB cells with 100 μM HC inhibited the attachment of KB cells to type I collagen and fibronectin by 59 and 29%, respectively. Exposure of KB cells to 0.1 mM HC for 24 h resulted in cell cycle arrest at late S and G2/M phase. Increasing the HC concentration to 0.25 and 0.5 mM led to apoptosis as revealed by detection of sub‐G0/G1 peaks with a concomitant decrease in the number of cells residing in late S and G2/M phase. Inducing the apoptosis of KB cells by HC was accompanied by marked depletion in reduced form of GSH (>0.2 mM) and the increasing of reactive oxygen species production (>0.1 mM) as analysed by CMF‐ and DCF‐single cell fluorescence flow cytometry. These results indicate that HC exerts antioxidant property at low concentration. HC also inhibits the growth, adhesion and cell cycle progression of KB cells, whereas its induction of KB cell apoptosis (HC>0.1 mM) was accompanied by cellular redox changes.


Cell Biology and Toxicology | 1998

Cytotoxicity of sodium fluoride on human oral mucosal fibroblasts and its mechanisms

Jiiang-Huei Jeng; Chi-Chuan Hsieh; Wan-Hong Lan; Mei Chi Chang; Sze-Kwan Lin; Liang-Jiunn Hahn; Mark Yen-Ping Kuo

Because sodium fluoride (NaF) is widely used for prevention of dental caries, pathobiological effects of NaF were investigated on human oral mucosal fibroblasts. The results showed that NaF was cytotoxic to oral mucosal fibroblasts at concentrations of 4 mmol/L or higher. Exposure of cells to NaF for 2 h also inhibited protein synthesis, cellular ATP level and functional mitochondrial activities in a dose-dependent manner. However, incubation of cells with NaF up to 12 mmol/L for 2 h depleted only 13% of cellular glutathione level. The IC50 of NaF on cellular ATP level was about 5.75 mmol/L. Preincubation of the cells with pyruvate and succinate did not protect cells from NaF-induced ATP depletion. At concentrations of 4 mmol/L, 8 mmol/L and 12 mmol/L, NaF inhibited 31%, 56% and 57% of mitochondrial functions, respectively, after 2 h incubation. No significant inhibition for NaF was found at concentrations lower than 2 mmol/L (40 ppm). These results indicate that NaF can be toxic to oral mucosal fibroblasts in vitro by its inhibition of protein synthesis, mitochondrial function and depletion of cellular ATP. Because of repeated and long-term usage of NaF, more detailed studies should be undertaken to understand its toxic effects in vitro and in vivo.


Food and Chemical Toxicology | 2002

Scavenging property of three cresol isomers against H2O2, hypochlorite, superoxide and hydroxyl radicals.

Sin-Yuet Yeung; Wan-Hong Lan; Chun-Hsun Huang; Chun-Pin Lin; Chiu-Po Chan; Mei Chi Chang; Jiiang-Huei Jeng

Formocresol has long been used for pulpotomy of primary teeth and as an intracanal medicament. Little is known, however, about the pharmacological effect of tricresols. This study showed that three cresol isomers, o-cresol, m-cresol and p-cresol, are H2O2 scavengers with a 50% inhibitory concentration (IC50) of 502, 6.7 and 10.16 microM, respectively. o-, m- and p-cresol were also shown to be effective scavengers of superoxide radicals generated by xanthine/xanthine oxidase with an IC50 of 282, 153 and > 4000 microM, respectively, as analyzed by luminometer. o-, m- and p-cresol showed protective effects on the DNA breaks generated by H2O2/FeCl2 and FeCl3/ascorbate/H2O2 systems at concentrations ranging from 70 microM to 1.43 mM, o-, m- and p-cresol also showed differential protective effects against DNA breaks induced by 0.17% NaOCl with 100% inhibitory concentration (IC100) of about 10, 1 and 10 mM, respectively. In addition, reaction with 3% H2O2 and 0.17% NaOCl completely prevented NaOCl-induced DNA breaks. The results indicate that the three cresol isomers are effective ROS scavengers and may prevent ROS induced damage when used as pulpotomy agents or as intracanal medicaments. Owing to the difference in the position of the functional hydroxyl group in the three cresol isomers, m-cresol is the most effective ROS scavenger. Concomitant use of H2O2 for root canal irrigation may diminish both the tissue dissolving capacity of NaOCl and NaOCl-induced DNA damage.


Biomaterials | 2010

The role of reactive oxygen species and hemeoxygenase-1 expression in the cytotoxicity, cell cycle alteration and apoptosis of dental pulp cells induced by BisGMA

Mei-Chi Chang; Lin-I Chen; Chiu-Po Chan; Jang-Jaer Lee; Tong-Mei Wang; Ting-Ting Yang; Po-Shuen Lin; Hsueh-Jen Lin; Hsiao-Hua Chang; Jiiang-Huei Jeng

Biocompatibility of dentin bonding agents (DBAs) and resin composite is important to preserve the pulp vitality after operative restoration. Bisphenol-glycidyl-methacrylate (BisGMA) is one common monomer adding into DBAs and resin. In this study, we found that exposure of human dental pulp cells to BisGMA (>0.1 mM) led to cytotoxicity, G2/M cell cycle arrest and apoptosis as analyzed by propidium iodide (PI) and PI/annexin V dual fluorescent flow cytometry. These events were associated with a decline of cdc2, cdc25C and cyclinB1 expression at both mRNA and protein levels. BisGMA also induced the expression of hemeoxygenase-1 (HO-1), an oxidative stress responsive gene, in pulp cells. Catalase could prevent the BisGMA-induced alteration of cell cycle-related genes (cdc2, cdc25C, cyclinB1) and HO-1 expression in dental pulp cells. Interestingly, Zn-protoporphyrin (2.5-5 microM), a HO inhibitor, enhanced the BisGMA-induced reactive oxygen species (ROS) production and cytotoxicity. These results suggest that exposure to higher concentrations of BisGMA may stimulate ROS production, cell cycle arrest, apoptosis and cell death. Inducing the expression of HO-1 in dental pulp cells by BisGMA is mediated by ROS production and important to protect dental pulp against the toxicity by monomers present in composite resin and DBAs.

Collaboration


Dive into the Jiiang-Huei Jeng's collaboration.

Top Co-Authors

Avatar

Mei-Chi Chang

Chang Gung University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Chiu-Po Chan

Memorial Hospital of South Bend

View shared research outputs
Top Co-Authors

Avatar

Jang-Jaer Lee

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Mei Chi Chang

Chang Gung University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Wan-Hong Lan

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Hsiao-Hua Chang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Yi-Jane Chen

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Liang-Jiunn Hahn

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Chun-Pin Lin

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Tong-Mei Wang

National Taiwan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge