Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jang-Jaer Lee is active.

Publication


Featured researches published by Jang-Jaer Lee.


Journal of Biological Chemistry | 2004

The Induction of Prostaglandin E2 Production, Interleukin-6 Production, Cell Cycle Arrest, and Cytotoxicity in Primary Oral Keratinocytes and KB Cancer Cells by Areca Nut Ingredients Is Differentially Regulated by MEK/ERK Activation

Mei-Chi Chang; Hui-Lin Wu; Jang-Jaer Lee; Po-Hsuen Lee; Hsiao-Hwa Chang; Liang-Jiunn Hahn; Bor-Ryu Lin; Yi-Jane Chen; Jiiang-Huei Jeng

There are about 200–600 million betel quid (BQ) chewers in the world. BQ chewing is one of the major risk factor of hepatocarcinoma, oropharyngeal, and esophagus cancers in Taiwan, India, and Southeast Asian countries. Thus, the precise molecular mechanisms deserve investigation. We used cultured primary keratinocytes and KB cells, RT-PCR, flow cytometry, Western blotting, and ELISA to evaluate whether alterations in early gene expression is crucial in the carcinogenic processes of BQ. We observed the induction of c-Fos mRNA expression in human gingival keratinocyte (GK) and KB carcinoma cells by areca nut (AN) extract and arecoline. A maximal increment in c-fos gene expression was shown at about 30 min after challenge. AN extract (100–800 μg/ml) and arecoline (0.1–0.8 mm) also stimulated ERK1/ERK2 phosphorylation with a maximal stimulation at 5–10 min of exposure. Pretreatment by U0126 (30 μm), a MEK inhibitor, markedly inhibited the c-Fos, cyclooxygenase-2 (COX-2), and IL-6 mRNA expression of the KB epithelial cells. In addition, U0126 and PD98059 (50 μm) also decreased AN extract- and arecoline-associated PGE2 and IL-6 production in GK and KB cells. However, U0126 by itself arrested the cells in G0/G1 phase, but was not able to prevent AN- and arecoline-induced cell death or apoptosis. In contrast, U0126 enhanced the AN-induced apoptosis of KB cells. AN ingredients thus play a significant role in the pathogenesis of oropharyngeal cancer by activation of MEK1/ERK/c-Fos pathway, which promotes keratinocyte inflammation, cell survival, and affects cell cycle progression.


Angle Orthodontist | 2009

Maxillary Molar Intrusion with Fixed Appliances and Mini-implant Anchorage Studied in Three Dimensions

Chung-Chen Jane Yao; Jang-Jaer Lee; Hsing-Yu Chen; Zwei-Chieng Chang; Hsin-Fu Chang; Yi-Jane Chen

The intrusion of an overerupted maxillary molar using traditional orthodontic treatment is a real challenge. The aim of this study was to investigate the envelope of intrusive movements of a maxillary molar in cases using mini-implants as anchorage with partial or full-mouth fixed edgewise appliances. The cusp tips of the pretreatment and postintrusion dental casts were recorded by a three-dimensional (3D) digitizer. The 3D data of the serial dental casts were analyzed to distinguish the direction and magnitude of individual tooth movement. The mean intrusive movement of the maxillary first molars was three to four mm, with a maximum of over eight mm. For the adjacent maxillary second molars and second premolars, the amount of intrusion was two mm and 1-2 mm, respectively. This study demonstrated that significant true intrusion of maxillary molars could be obtained in a well-controlled manner by using fixed appliances with titanium mini-implants as bony anchorage.


British Journal of Pharmacology | 2002

Inducing the cell cycle arrest and apoptosis of oral KB carcinoma cells by hydroxychavicol: roles of glutathione and reactive oxygen species

Mei Chi Chang; B J Uang; Hsyueh Liang Wu; Jang-Jaer Lee; Liang-Jiunn Hahn; Jiiang-Huei Jeng

Hydroxychavicol (HC; 10 – 50 μM), a betel leaf component, was found to suppress the 2% H2O2‐induced lucigenin chemiluminescence for 53 – 75%. HC (0.02 – 2 μM) was also able to trap superoxide radicals generated by a xanthine/xanthine oxidase system with 38 – 94% of inhibition. Hydroxyl radicals‐induced PUC18 plasmid DNA breaks was prevented by HC (1.6 – 16 μM). A 24‐h exposure of KB cells to HC (0.5, 1 mM) resulted in 54 – 74% cell death as analysed by a 3‐(4,5‐dimethyl‐thiazol‐2‐yl)‐2,5‐diphenyl‐tetrazolium bromide (MTT) assay. HC (10, 50 μM) further suppressed the growth of KB cells (15 and 76%, respectively). Long‐term colony formation of KB cells was inhibited by 51% with 10 μM HC. Pretreatment of KB cells with 100 μM HC inhibited the attachment of KB cells to type I collagen and fibronectin by 59 and 29%, respectively. Exposure of KB cells to 0.1 mM HC for 24 h resulted in cell cycle arrest at late S and G2/M phase. Increasing the HC concentration to 0.25 and 0.5 mM led to apoptosis as revealed by detection of sub‐G0/G1 peaks with a concomitant decrease in the number of cells residing in late S and G2/M phase. Inducing the apoptosis of KB cells by HC was accompanied by marked depletion in reduced form of GSH (>0.2 mM) and the increasing of reactive oxygen species production (>0.1 mM) as analysed by CMF‐ and DCF‐single cell fluorescence flow cytometry. These results indicate that HC exerts antioxidant property at low concentration. HC also inhibits the growth, adhesion and cell cycle progression of KB cells, whereas its induction of KB cell apoptosis (HC>0.1 mM) was accompanied by cellular redox changes.


Biomaterials | 2010

The role of reactive oxygen species and hemeoxygenase-1 expression in the cytotoxicity, cell cycle alteration and apoptosis of dental pulp cells induced by BisGMA

Mei-Chi Chang; Lin-I Chen; Chiu-Po Chan; Jang-Jaer Lee; Tong-Mei Wang; Ting-Ting Yang; Po-Shuen Lin; Hsueh-Jen Lin; Hsiao-Hua Chang; Jiiang-Huei Jeng

Biocompatibility of dentin bonding agents (DBAs) and resin composite is important to preserve the pulp vitality after operative restoration. Bisphenol-glycidyl-methacrylate (BisGMA) is one common monomer adding into DBAs and resin. In this study, we found that exposure of human dental pulp cells to BisGMA (>0.1 mM) led to cytotoxicity, G2/M cell cycle arrest and apoptosis as analyzed by propidium iodide (PI) and PI/annexin V dual fluorescent flow cytometry. These events were associated with a decline of cdc2, cdc25C and cyclinB1 expression at both mRNA and protein levels. BisGMA also induced the expression of hemeoxygenase-1 (HO-1), an oxidative stress responsive gene, in pulp cells. Catalase could prevent the BisGMA-induced alteration of cell cycle-related genes (cdc2, cdc25C, cyclinB1) and HO-1 expression in dental pulp cells. Interestingly, Zn-protoporphyrin (2.5-5 microM), a HO inhibitor, enhanced the BisGMA-induced reactive oxygen species (ROS) production and cytotoxicity. These results suggest that exposure to higher concentrations of BisGMA may stimulate ROS production, cell cycle arrest, apoptosis and cell death. Inducing the expression of HO-1 in dental pulp cells by BisGMA is mediated by ROS production and important to protect dental pulp against the toxicity by monomers present in composite resin and DBAs.


Head and Neck-journal for The Sciences and Specialties of The Head and Neck | 2011

Successful treatment of advanced bisphosphonate-related osteonecrosis of the mandible with adjunctive teriparatide therapy.

Jang-Jaer Lee; Shih-Jung Cheng; Jiiang-Huei Jeng; Chun-Pin Chiang; Hon-Ping Lau; Sang-Heng Kok

The management of bisphosphonate‐related osteonecrosis of the jaws (BRONJ) is challenging and controversial. At present, there is no established medication treatment for the disease.


Cellular and Molecular Life Sciences | 2004

Reactive oxygen species are crucial for hydroxychavicol toxicity toward KB epithelial cells

Jiiang-Huei Jeng; Ying Jan Wang; W. H. Chang; Hsyueh Liang Wu; Ching-Hao Li; B. J. Uang; Jaw-Jou Kang; Jang-Jaer Lee; Liang-Jiunn Hahn; Bor-Ru Lin; Mei-Chi Chang

Betel quid (BQ) chewing shows a strong correlation to the incidence of oral submucous fibrosis (OSF), leukoplakia and oral cancer. BQ contains mainly areca nut, lime, Piper betle leaf (PBL) and the inflorescence of P. betle (IPB). Hydroxychavicol (4-allyl-catechol, HC), as a major phenolic compound in PBL and IPB, is shown to induce oxidative stress, glutathione (GSH) depletion and cell cycle deregulation. Using bivariate BrdU/PI flow cytometry, KB cells in DNA synthesis (S phase) are shown to be sensitive to the toxic effect of HC and show cell cycle arrest and apoptosis following exposure to 0.1 and 0.3 mM HC. HC-induced apoptosis and cell cycle arrest are associated with mitochondrial membrane potential (ΔΨm) depolarization as revealed by a decrease in rhodamine fluorescence. N-acetyl-L-cysteine (1 mM), superoxide dismutase (100 U/ml) and catalase (1000 U/ml) were effective in prevention of HC-induced GSH depletion (as indicated by chloromethylfluorescein fluorescence), reactive oxygen species (ROS) production (by dichlorofluorescein fluorescence), cell cycle arrest and apoptosis. However, dimethylthiourea (2 mM), neocuproine (1 mM), 1,10-phenanthroline (200 μM) and desferrioxamine (0.5 mM) showed little effect on HC-induced cell changes. HC elevated the cellular and mitochondrial GSH levels at moderate concentrations (0.05–0.1 mM), whereas at a concentration of 0.3 mM, inhibitory effects were noted. These results indicate that HC consumption may be associated with BQ-chewing-related oral mucosal diseases via GSH depletion, ROS production, mitochondrial dysfunction, cell cycle disturbance and the induction of apoptosis. These events are related to the production of superoxide radicals and hydrogen peroxide.


Oral Oncology | 2003

Comparisons of norcantharidin cytotoxic effects on oral cancer cells and normal buccal keratinocytes

Sang-Heng Kok; Chi-Yuan Hong; Mark Yen-Ping Kuo; C.H.K Lee; Jang-Jaer Lee; I.U Lou; Mon-Ying Lee; Michael Hsiao; Sze-Kwan Lin

Norcantharidin (NCTD) is the demethylated analogue of cantharidin. In this study, multi-parameter assessments of morphological alterations, clonogenic efficiency, cell growth curves, DNA synthesis, and DNA strand break were employed to determine and compare the cytotoxic effects of NCTD on oral cancer KB cell line and normal buccal keratinocytes. The results showed NCTD induced significant cytotoxicity in KB cells after 24 h of exposure. Normal buccal keratinocytes were more resistant to NCTD induced cytotoxicity. The IC(50) of 24 h NCTD treatment for KB and keratinocytes were 15.06 and 216.29 microg/ml, respectively with a keratinocyte/KB selective index of 14.36. Anoikis and membrane blebbing, morphological characterization of apoptosis, were observed in about 90% of KB cells after exposure to 100 microg/ml of NCTD for 24 h compared to about 30% in keratinocytes. In addition, inhibition of colony formation was noted in KB cells even when exposed to low concentration of drug (5 microg/ml) for a short period of time (6 h). NCTD inhibited subsequent cell proliferation in KB but growth of normal keratinocytes was retarded only temporarily. NCTD inhibited DNA synthesis in both KB and normal keratinocytes. However, keratinocytes were more sensitive to DNA synthesis inhibition by low dose of NCTD. Significant DNA strand break was noted in KB cells only after cell viability was reduced to less than 60% of the control. In comparison, normal keratinocytes were resistant to NCTD induced DNA strand break. These results indicated KB cells were more sensitive to NCTD induced cytotoxicity compared to normal keratinocytes. NCTD may be of value in treating oral cancers. The underlying mechanisms of the differential actions of NCTD on these two cell types are worthy of further investigations.


Acta Biomaterialia | 2012

Carboxylesterase expression in human dental pulp cells: Role in regulation of BisGMA-induced prostanoid production and cytotoxicity

Mei Chi Chang; Li-Deh Lin; F.-H. Chuang; Chiu-Po Chan; Tong-Mei Wang; Jang-Jaer Lee; Po-Yuan Jeng; Wan-Yu Tseng; Hseuh-Jen Lin; Jiiang-Huei Jeng

Biocompatibility of dentin bonding agents (DBA) and composite resin may affect the treatment outcome (e.g., healthy pulp, pulpal inflammation, pulp necrosis) after operative restoration. Bisphenol-glycidyl methacrylate (BisGMA) is one of the major monomers present in DBA and resin. Prior studies focused on salivary esterase for metabolism and degradation of resin monomers clinically. This study found that human dental pulp cells expressed mainly carboxylesterase-2 (CES2) and smaller amounts of CES1A1 and CES3 isoforms. Exposure to BisGMA stimulated CES isoforms expression of pulp cells, and this event was inhibited by catalase. Exogenous addition of porcine esterase prevented BisGMA- and DBA-induced cytotoxicity. Interestingly, inhibition of CES by bis(p-nitrophenyl) phosphate (BNPP) and CES2 by loperamide enhanced the cytotoxicity of BisGMA and DBA. Addition of porcine esterase or N-acetyl-l-cysteine prevented BisGMA-induced prostaglandin E(2) (PGE(2)) and PGF(2α) production. In contrast, addition of BNPP and loperamide, but not mevastatin, enhanced BisGMA-induced PGE(2) and PGF(2α) production in dental pulp cells. These results suggest that BisGMA may induce the cytotoxicity and prostanoid production of pulp cells, leading to pulpal inflammation or necrosis via reactive oxygen species production. Expression of CES, especially CES2, in dental pulp cells can be an adaptive response to protect dental pulp against BisGMA-induced cytotoxicity and prostanoid release. Resin monomers are the main toxic components in DBA, and the ester group is crucial for monomer toxicity.


Head and Neck-journal for The Sciences and Specialties of The Head and Neck | 2011

Increased prevalence of interleukin-17-producing CD4(+) tumor infiltrating lymphocytes in human oral squamous cell carcinoma.

Jang-Jaer Lee; Yen-Liang Chang; Wan-Ling Lai; Jenq-Yuh Ko; Mark Yen-Ping Kuo; Chun-Pin Chiang; Miyuki Azuma; Ching-Wen Chen; Jean-San Chia

T helper 17 (Th17) and regulatory T cells share plasticity in the expression of interleukin (IL)‐17 and forkhead box P3 (FOXP3), but their mutual presence in human diseases is unclear.


Biomaterials | 2010

The mechanisms of cytotoxicity of urethane dimethacrylate to Chinese hamster ovary cells

Hsiao-Hua Chang; Mei-Chi Chang; Li-Deh Lin; Jang-Jaer Lee; Tong-Mei Wang; Chun-Hsun Huang; Ting-Ting Yang; Hsueh-Jen Lin; Jiiang-Huei Jeng

Monomers released from resin-containing products may cause various adverse effects. Urethane dimethacrylate (UDMA) is a principal resin monomer and also a major component released from various dental resin materials. Thus the toxic effects and mechanisms should be elucidated for improving of its safety use. Here we investigated the effects of UDMA on the growth, cell cycle progression, reactive oxygen species (ROS) production and glutathione (GSH) alteration in CHO-K1 cells, and the preventive effects by antioxidants (NAC and catalase) were also evaluated. UDMA elicited growth inhibition (>0.025 mm) of CHO-K1 cells in a clearly dose-dependent manner. Cell cycle perturbation and ROS overproduction were also observed. A 0.1 mm UDMA-induced S-phase cell cycle arrest and ROS accumulation. Cell apoptosis and necrosis became significant when UDMA concentration was 0.25 mm. GSH depletion occurred at cells treated with 0.25 mm UDMA, a highly cytotoxic concentration at which point myriad cells were under apoptosis or necrosis. Thus GSH depletion can be crucial for the death of CHO-K1 cells. Furthermore NAC (0.5-10 mm) and catalase (250-1000 U/ml) obviously attenuated the UDMA-induced toxicity by reducing ROS generation and cell cycle disturbance, and the effects were dose-related. These results suggest that UDMA toxicity is associated with ROS production, GSH depletion, cell cycle disturbance and cell apoptosis/necrosis.

Collaboration


Dive into the Jang-Jaer Lee's collaboration.

Top Co-Authors

Avatar

Sang-Heng Kok

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Chun-Pin Chiang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Jiiang-Huei Jeng

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Shih-Jung Cheng

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Hao-Hueng Chang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Hsin-Ming Chen

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Mark Yen-Ping Kuo

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Liang-Jiunn Hahn

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Mei Chi Chang

Chang Gung University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Mei-Chi Chang

National Taiwan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge