Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiing-Kuan Yee is active.

Publication


Featured researches published by Jiing-Kuan Yee.


Science Translational Medicine | 2010

RNA-Based Gene Therapy for HIV with Lentiviral Vector–Modified CD34+ Cells in Patients Undergoing Transplantation for AIDS-Related Lymphoma

David DiGiusto; Amrita Krishnan; Lijing Li; Haitang Li; Shirley Li; Anitha Rao; Shu Mi; Priscilla Yam; Sherri Stinson; Michael Kalos; Joseph Alvarnas; Simon F. Lacey; Jiing-Kuan Yee; Ming-Jie Li; Larry A. Couture; David Hsu; Stephen J. Forman; John J. Rossi; John A. Zaia

Transfected stem cells transplanted into patients with HIV infection resulted in sustained RNA expression of introduced genes in blood cells for up to 2 years. Steps Toward a Stable Source of Therapeutic RNA Gene therapy in humans has not been easy to implement. Genes inserted into complex human cells have triggered serious unintended consequences and have often proven to be short-lived. Yet perseverance may be paying off. DiGiusto et al. report a step toward workable gene therapy in the form of stable expression of a lentiviral vector encoding anti-HIV RNAs in blood stem cells transplanted into AIDS patients. None of these patients is cured, but the vector seems to stably express the potentially therapeutic RNAs. Putting exogenous gene sequences into humans is risky, and review boards are appropriately conservative. But DiGiusto et al. took advantage of a clinical situation to design a trial that minimized extra risk to the subjects. Blood cancer (lymphoma) is common in AIDS patients, and they are often treated by ablation of their diseased bone marrow with chemotherapy followed by a transplant with their own previously saved blood stem cells. Because these patients were being transplanted with their own blood cells anyway, the authors were able to get permission to transfect a few of the blood cells of four patients with a vector carrying anti-HIV entities and reinfuse them along with the normally transplanted cells. The vector made RNAs that could counteract viral replication in several ways: inhibition of viral entry (with a CCR5 ribozyme), inhibition of RNA transport [by a small interfering RNA (siRNA) to tat/rev], and inhibition of viral transcription initiation with a decoy RNA. The good news was that the patients showed no signs of toxicity besides problems usually associated with transplantation and that blood cells from all four patients contained signs of the transplanted genes, with the amounts increasing in two of the patients after 18 months. Although the fraction of cells containing the genes was <0.2%, this was not too different from the fraction of transfected cells that was infused into the patients. The three anti-HIV RNAs could also be detected as long as 1 year after the initial infusion, and examination of T cells, monocytes, and B cells from one patient confirmed the presence of vector in these three cell types. These cells that survived for long periods of time in patients, although too scarce to cure or even improve their HIV infections, nevertheless offer lessons for future applications of gene therapy. We know that this procedure is seemingly safe and that cells given new genetic material via a lentiviral vector outside the patient can survive once reimplanted. Continued perseverance can only bring us closer to realizing the potential of this promising therapy. AIDS patients who develop lymphoma are often treated with transplanted hematopoietic progenitor cells. As a first step in developing a hematopoietic cell–based gene therapy treatment, four patients undergoing treatment with these transplanted cells were also given gene-modified peripheral blood–derived (CD34+) hematopoietic progenitor cells expressing three RNA-based anti-HIV moieties (tat/rev short hairpin RNA, TAR decoy, and CCR5 ribozyme). In vitro analysis of these gene-modified cells showed no differences in their hematopoietic potential compared with nontransduced cells. In vitro estimates of successful expression of the anti-HIV moieties were initially as high as 22% but declined to ~1% over 4 weeks of culture. Ethical study design required that patients be transplanted with both gene-modified and unmanipulated hematopoietic progenitor cells obtained from the patient by apheresis. Transfected cells were successfully engrafted in all four infused patients by day 11, and there were no unexpected infusion-related toxicities. Persistent vector expression in multiple cell lineages was observed at low levels for up to 24 months, as was expression of the introduced small interfering RNA and ribozyme. Therefore, we have demonstrated stable vector expression in human blood cells after transplantation of autologous gene-modified hematopoietic progenitor cells. These results support the development of an RNA-based cell therapy platform for HIV.


Nature Biotechnology | 2015

Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors

Xiaoling Wang; Yebo Wang; Xiwei Wu; Jinhui Wang; Yingjia Wang; Zhaojun Qiu; Tammy Chang; He Huang; Ren-Jang Lin; Jiing-Kuan Yee

The utility of CRISPR-Cas9 and TALENs for genome editing may be compromised by their off-target activity. We show that integrase-defective lentiviral vectors (IDLVs) can detect such off-target cleavage with a frequency as low as 1%. In the case of Cas9, we find frequent off-target sites with a one-base bulge or up to 13 mismatches between the single guide RNA (sgRNA) and its genomic target, which refines sgRNA design.


Stem Cells | 2011

Brief Report: Phenotypic Rescue of Induced Pluripotent Stem Cell-Derived Motoneurons of a Spinal Muscular Atrophy Patient†‡§

Tammy Chang; Weiyan Zheng; Walter Tsark; Steven E. Bates; He Huang; Ren-Jang Lin; Jiing-Kuan Yee

Spinal muscular atrophy (SMA) is one of the most common autosomal recessive disorders in humans and is a common genetic cause of infant mortality. The disease is caused by loss of the survival of motoneuron (SMN) protein, resulting in the degeneration of alpha motoneurons in spinal cord and muscular atrophy in the limbs and trunk. One function of SMN involves RNA splicing. It is unclear why a deficiency in a housekeeping function such as RNA splicing causes profound effects only on motoneurons but not on other cell types. One difficulty in studying SMA is the scarcity of patients samples. The discovery that somatic cells can be reprogrammed to become induced pluripotent stem cell (iPSCs) raises the intriguing possibility of modeling human diseases in vitro. We reported the establishment of five iPSC lines from the fibroblasts of a type 1 SMA patient. Neuronal cultures derived from these SMA iPSC lines exhibited a reduced capacity to form motoneurons and an abnormality in neurite outgrowth. Ectopic SMN expression in these iPSC lines restored normal motoneuron differentiation and rescued the phenotype of delayed neurite outgrowth. These results suggest that the observed abnormalities are indeed caused by SMN deficiency and not by iPSC clonal variability. Further characterization of the cellular and functional deficits in motoneurons derived from these iPSCs may accelerate the exploration of the underlying mechanisms of SMA pathogenesis. STEM CELLS 2011;29:2090–2093.


Oligonucleotides | 2003

Specific killing of Ph+ chronic myeloid leukemia cells by a lentiviral vector-delivered anti-bcr/abl small hairpin RNA.

Ming-Jie Li; Ross McMahon; David S. Snyder; Jiing-Kuan Yee; John J. Rossi

Chronic myeloid leukemia (CML) is characterized by a reciprocal chromosomal translocation between chromosomes 9 and 22 t(9;22)(q34;q11) that causes fusion of the bcr and abl genes. Transcription and splicing of the fusion gene generate two major splice variants of the bcr/abl transcript that encode an oncoprotein with tyrosine kinase activity. We have taken advantage of lentiviral vectormediated delivery of anti-bcr/abl short hairpin RNAs (shRNA) to downregulate the bcr/abl transcript in Philadelphia chromosome-positive (Ph+) K562 leukemia cells. This downregulation caused complete inhibition of proliferation of these cells and was accompanied by >90% inhibition of the bcr/abl transcript and p210 protein. These results demonstrate the feasibility of using a lentiviral vector to stably transduce therapeutic shRNAs into leukemia cells for the potential ex vivo purging of Ph+ cells in an autologous hematopoietic cell transplant setting. Furthermore, the robust expression of the shRNAs from our lentiviral vector suggests that this system could be generally useful for the expression of other shRNAs.


Leukemia | 2011

Inhibition of Grb2 expression demonstrates an important role in BCR-ABL-mediated MAPK activation and transformation of primary human hematopoietic cells

Hardik Modi; Liang Li; Su Chu; John J. Rossi; Jiing-Kuan Yee; Ravi Bhatia

Chronic myeloid leukemia (CML) results from the expression of the BCR/ABL oncogene in a primitive hematopoietic cell. However, BCR/ABL-activated signaling mechanisms are dependent on the cellular context in which it is expressed, and mechanisms underlying primitive human hematopoietic cell transformation by BCR–ABL are not well understood. Our previous studies have shown that BCR/ABL-Y177 has an essential role in Ras activation and human hematopoietic progenitor transformation in CML. The adapter protein growth factor receptor-binding protein-2 (Grb2) can bind phosphorylated BCR/ABL-Y177, induce Grb2-SoS complex formation and activate Ras signaling. We investigated the role of Grb2 in CML progenitor transformation by cotransducing human CD34+ cells with lentivirus vectors expressing short hairpin RNA to Grb2 and retrovirus vectors expressing BCR/ABL. We show that Grb2 knockdown significantly inhibits proliferation and survival of BCR–ABL-expressing CD34+ cells, but not control CD34+ cells. Grb2 knockdown reduced mitogen-activated protein kinase (MAPK) activity in BCR–ABL-expressing hematopoietic cells. We conclude that inhibition of Grb2 expression demonstrates an important role in BCR–ABL-mediated MAPK activation and transformation of primary human hematopoietic cells.These results support further investigation of downstream effectors of Grb2-mediated signals and targeting of Grb2 interactions in the treatment of CML.


PLOS ONE | 2014

Precise Gene Modification Mediated by TALEN and Single-Stranded Oligodeoxynucleotides in Human Cells

Xiaoling Wang; Yingjia Wang; He Huang; Buyuan Chen; Xinji Chen; Jianda Hu; Tammy Chang; Ren-Jang Lin; Jiing-Kuan Yee

The development of human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) facilitates in vitro studies of human disease mechanisms, speeds up the process of drug screening, and raises the feasibility of using cell replacement therapy in clinics. However, the study of genotype-phenotype relationships in ESCs or iPSCs is hampered by the low efficiency of site-specific gene editing. Transcription activator-like effector nucleases (TALENs) spurred interest due to the ease of assembly, high efficiency and faithful gene targeting. In this study, we optimized the TALEN design to maximize its genomic cutting efficiency. We showed that using optimized TALENs in conjunction with single-strand oligodeoxynucleotide (ssODN) allowed efficient gene editing in human cells. Gene mutations and gene deletions for up to 7.8 kb can be accomplished at high efficiencies. We established human tumor cell lines and H9 ESC lines with homozygous deletion of the microRNA-21 (miR-21) gene and miR-9-2 gene. These cell lines provide a robust platform to dissect the roles these genes play during cell differentiation and tumorigenesis. We also observed that the endogenous homologous chromosome can serve as a donor template for gene editing. Overall, our studies demonstrate the versatility of using ssODN and TALEN to establish genetically modified cells for research and therapeutic application.


Cancer Letters | 2015

Disruption of microRNA-21 by TALEN leads to diminished cell transformation and increased expression of cell–environment interaction genes

Buyuan Chen; Xinji Chen; Xiwei Wu; Xiaoling Wang; Yingjia Wang; Ting-Yu Lin; Jessica Kurata; Jun Wu; Steven Vonderfecht; Guihua Sun; He Huang; Jiing-Kuan Yee; Jianda Hu; Ren-Jang Lin

MicroRNA-21 is dysregulated in many cancers and fibrotic diseases. Since miR-21 suppresses several tumor suppressor and anti-apoptotic genes, it is considered a cancer therapeutic target. Antisense oligonucleotides are commonly used to inhibit a miRNA; however, blocking miRNA function via an antagomir is temporary, often only achieves a partial knock-down, and may be complicated by off-target effects. Here, we used transcription activator-like effector nucleases (TALENs) to disrupt miR-21 in cancerous cells. Individual deletion clones were screened and isolated without drug selection. Sequencing and quantitative RT-PCR identified clones with no miR-21 expression. The loss of miR-21 led to subtle but global increases of mRNAs containing miR-21 target sequences. Cells without miR-21 became more sensitive to cisplatin and less transformed in culture and in mouse xenografts. In addition to the increase of PDCD4 and PTEN protein, mRNAs for COL4A1, JAG1, SERPINB5/Maspin, SMAD7, and TGFBI - all are miR-21 targets and involved in TGFβ and fibrosis regulation - were significantly upregulated in miR-21 knockout cells. Gene ontology and pathway analysis suggested that cell-environment interactions involving extracellular matrix can be an important miR-21 pathogenic mechanism. The study also demonstrates the value of using TALEN-mediated microRNA gene disruption in human pathobiological studies.


Molecular Therapy | 2010

Site-specific Gene Insertion Mediated by a Cre-loxP-carrying Lentiviral Vector

Gilles Michel; Yin Yu; Tammy Chang; Jiing-Kuan Yee

Retroviral vectors have been used to treat patients with the X-linked severe combined immunodeficiency disease and chronic granulomatous disease. In both cases, success has been undermined by clonal expansion of transduced cells in some patients due to insertional mutagenesis induced by random vector integration. This outcome underscores the importance of designing vectors for site-specific gene insertion to avoid unanticipated gene disruption or gene activation. In the present study, we incorporated the sequence-specific Cre protein into lentiviral virions. We demonstrated that the virion-associated Cre protein remained enzymatically active and was capable of directing site-specific insertion of a gene in the vector into a defined loxP site in the host genome. As there are loxP-like sequences throughout human genome that can be recognized by either wild-type Cre or Cre variants, our study demonstrates a new strategy of designing lentiviral-based vector for gene targeting.


Acta Haematologica | 2007

An Improved Mouse Sca-1+ Cell-Based Bone Marrow Transplantation Model for Use in Gene- and Cell-Based Therapeutic Studies

Susan L. Hall; K.-H. William Lau; Shin-Tai Chen; Joshua C. Felt; Daila S. Gridley; Jiing-Kuan Yee; David J. Baylink

This study sought to develop a murine bone marrow transplantation strategy that would yield consistently high levels of long-term engraftment without significant morbidity and mortality. Hematopoietic stem cell (HSC)-enriched Sca-1+ cells were used for transplantation because of their propensity of homing to bone marrow. Green fluorescent protein (GFP)-expressing transgenic mice were used as donors. Murine Sca-1+ cells were enriched 13-fold from whole bone marrow with immunomagnetic column chromatography. Retroorbital injections yielded highly reproducible and higher levels of engraftment compared with tail vein injections. The combination of W41/W41 recipient mice and sublethal irradiation preconditioning produced long-term engraftment with minimal morbidity and mortality. A 24-hour delay between the sublethal irradiation and transplantation did not affect the efficiency and level of engraftment, but provided flexibility with respect to the timing of transplantation. Based on these findings, a mouse Sca-1+ cell-based strategy, involving the retroorbital injection of Sca-1+ cells into sublethally irradiated, myelosuppressed W41/W41 recipient mice within 24 h after irradiation, was developed. Transplantation of lentiviral vector-transduced wild-type Sca-1+ cells expressing GFP by this strategy led to consistently high levels of long-term engraftment. In summary, this murine Sca-1+ cell-based strategy could be used in studies of HSC-based gene or cell therapies.


Gene | 2013

Significant differences in genotoxicity induced by retrovirus integration in human T cells and induced pluripotent stem cells

Weiyan Zheng; Yingjia Wang; Tammy Chang; He Huang; Jiing-Kuan Yee

Retrovirus is frequently used in the genetic modification of mammalian cells and the establishment of induced pluripotent stem cells (iPSCs) via cell reprogramming. Vector-induced genotoxicity could induce profound effect on the physiology and function of these stem cells and their differentiated progeny. We analyzed retrovirus-induced genotoxicity in somatic cell Jurkat and two iPSC lines. In Jurkat cells, retrovirus frequently activated host gene expression and gene activation was not dependent on the distance between the integration site and the transcription start site of the host gene. In contrast, retrovirus frequently down-regulated host gene expression in iPSCs, possibly due to the action of chromatin silencing that spreads from the provirus to the nearby host gene promoter. Our data raises the issue that some of the phenotypic variability observed among iPSC clones derived from the same parental cell line may be caused by retrovirus-induced gene expression changes rather than by the reprogramming process itself. It also underscores the importance of characterizing retrovirus integration and carrying out risk assessment of iPSCs before they can be applied in basic research and clinics.

Collaboration


Dive into the Jiing-Kuan Yee's collaboration.

Top Co-Authors

Avatar

John J. Rossi

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Tammy Chang

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

John A. Zaia

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Priscilla Yam

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ming-Jie Li

Beckman Research Institute

View shared research outputs
Top Co-Authors

Avatar

Ren-Jang Lin

Beckman Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gilles Michel

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Haitang Li

Beckman Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge