Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ren-Jang Lin is active.

Publication


Featured researches published by Ren-Jang Lin.


Nature Biotechnology | 2015

Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors

Xiaoling Wang; Yebo Wang; Xiwei Wu; Jinhui Wang; Yingjia Wang; Zhaojun Qiu; Tammy Chang; He Huang; Ren-Jang Lin; Jiing-Kuan Yee

The utility of CRISPR-Cas9 and TALENs for genome editing may be compromised by their off-target activity. We show that integrase-defective lentiviral vectors (IDLVs) can detect such off-target cleavage with a frequency as low as 1%. In the case of Cas9, we find frequent off-target sites with a one-base bulge or up to 13 mismatches between the single guide RNA (sgRNA) and its genomic target, which refines sgRNA design.


Nature | 2000

Metal-ion coordination by U6 small nuclear RNA contributes to catalysis in the spliceosome.

Shyue-Lee Yean; Gerald E. Wuenschell; John Termini; Ren-Jang Lin

Introns are removed from nuclear messenger RNA precursors through two sequential phospho-transesterification reactions in a dynamic RNA–protein complex called the spliceosome. But whether splicing is catalysed by small nuclear RNAs in the spliceosome is unresolved. As the spliceosome is a metalloenzyme, it is important to determine whether snRNAs coordinate catalytic metals. Here we show that yeast U6 snRNA coordinates a metal ion that is required for the catalytic activity of the spliceosome. With Mg2+, U6 snRNA with a sulphur substitution for the pro-RP or pro-SP non-bridging phosphoryl oxygen of nucleotide U80 reconstitutes a fully assembled yet catalytically inactive spliceosome. Adding a thiophilic ion such as Mn2+ allows the first transesterification reaction to occur in the U6/sU80(SP)- but not the U6/sU80(RP)-reconstituted spliceosome. Mg2+ competitively inhibits the Mn2+-rescued reaction, indicating that the metal-binding site at U6/U80 exists in the wild-type spliceosome and that the site changes its metal requirement for activity in the SP spliceosome. Thus, U6 snRNA contributes to pre-messenger RNA splicing through metal-ion coordination, which is consistent with RNA catalysis by the spliceosome.


Gene | 2003

DExD/H-box proteins and their partners: helping RNA helicases unwind.

Edward Silverman; Gretchen Edwalds-Gilbert; Ren-Jang Lin

Members of the DExD/H-box family of RNA helicases are involved in many processes and complexes within the cell. While individual DExD/H helicase family members have been studied extensively, the mechanisms through which helicases affect multiprotein complexes are just beginning to be investigated. Because RNA helicases are both highly conserved and numerous in the cell, study of RNA helicase recruitment and modulation by cofactors is necessary for understanding the mechanisms of helicase action in vivo. This review will focus on cofactor-mediated regulation of helicase target specificity and activity.


The EMBO Journal | 1992

The purified yeast pre-mRNA splicing factor PRP2 is an RNA-dependent NTPase.

Sahn Ho Kim; Joseph Smith; Alejandro Claude; Ren-Jang Lin

Unlike autocatalyzed self‐splicing reactions, nuclear pre‐mRNA splicing requires transacting macromolecules and ATP. A protein encoded by the PRP2 gene of Saccharomyces cerevisiae is required, in conjunction with ATP, for the first cleavage‐ligation reaction of pre‐mRNA splicing. In this study, we have purified two forms of the PRP2 gene product with apparent molecular weights of 100 kDa and 92 kDa, from a yeast strain overproducing the protein. Both proteins were indistinguishable in their ability to complement extracts derived from a heat‐sensitive prp2 mutant. Furthermore, we show that the PRP2 protein is capable of hydrolyzing nucleoside triphosphates in the presence of single‐stranded RNAs such as poly(U). However, purified PRP2 by itself did not unwind double‐stranded RNA substrates. The fact that an RNA‐dependent NTPase activity is intrinsic to PRP2 may account for the ATP requirement in the first catalytic reaction of pre‐mRNA splicing.


Molecular and Cellular Biology | 2004

Interaction between a G-Patch Protein and a Spliceosomal DEXD/H-Box ATPase That Is Critical for Splicing

Edward Silverman; Ayaka Maeda; Janet Wei; Paul Smith; Jean D. Beggs; Ren-Jang Lin

ABSTRACT Prp2 is an RNA-dependent ATPase that activates the spliceosome before the first transesterification reaction of pre-mRNA splicing. Prp2 has extensive homology throughout the helicase domain characteristic of DEXD/H-box helicases and a conserved carboxyl-terminal domain also found in the spliceosomal helicases Prp16, Prp22, and Prp43. Despite the extensive homology shared by these helicases, each has a distinct, sequential role in splicing; thus, uncovering the determinants of specificity becomes crucial to the understanding of Prp2 and the other DEAH-splicing helicases. Mutations in an 11-mer near the C-terminal end of Prp2 eliminate its spliceosome binding and splicing activity. Here we show that a helicase-associated protein interacts with this domain and that this interaction contributes to the splicing process. First, a genome-wide yeast two-hybrid screen using Prp2 as bait identified Spp2, which contained a motif with glycine residues found in a number of RNA binding proteins. SPP2 was originally isolated as a genetic suppressor of a prp2 mutant. In a reciprocal screen, Spp2 specifically pulled out the C-terminal half of Prp2. Mutations in the Prp2 C-terminal 11-mer that disrupted function or spliceosome binding also disrupted Spp2 interaction. A screen of randomly mutagenized SPP2 clones identified an Spp2 protein with a mutation in the G patch that could restore interaction with Prp2 and enhanced splicing in a prp2 mutant strain. The study identifies a potential mechanism for Prp2 specificity mediated through a unique interaction with Spp2 and elucidates a role for a helicase-associated protein in the binding of a DEXD/H-box protein to the spliceosome.


Cell | 1986

The yeast RNA gene products are essential for mRNA splicing in vitro

Arthur J. Lustig; Ren-Jang Lin; John Abelson

The yeast rna mutations (rna2-rna11) are a set of temperature-sensitive mutations that result in the accumulation of intron-containing mRNA precursors at the restrictive temperature. We have used the yeast in vitro splicing system to investigate the role of products of the RNA genes in mRNA splicing. We have tested the heat lability of the in vitro mRNA splicing reaction in extracts isolated from mutant and wild-type cells. Extracts isolated from seven of the nine rna mutants demonstrated heat lability in this assay, while most wild-type extracts were stable under the conditions utilized. We have also demonstrated that heat inactivation usually results in the specific loss of an exchangeable component by showing that most combinations of heat-inactivated extracts from different mutants complement one another. In three cases (rna2, rna5, and rna11), the linkage of the in vitro defect to the rna mutations was ascertained by a combination of reversion, tetrad, and in vitro complementation analyses. Furthermore, each heat-inactivated extract was capable of complementation by at least one fraction of the wild-type splicing system. Thus many of the RNA genes are likely to code for products directly involved in and essential for mRNA splicing.


Stem Cells | 2011

Brief Report: Phenotypic Rescue of Induced Pluripotent Stem Cell-Derived Motoneurons of a Spinal Muscular Atrophy Patient†‡§

Tammy Chang; Weiyan Zheng; Walter Tsark; Steven E. Bates; He Huang; Ren-Jang Lin; Jiing-Kuan Yee

Spinal muscular atrophy (SMA) is one of the most common autosomal recessive disorders in humans and is a common genetic cause of infant mortality. The disease is caused by loss of the survival of motoneuron (SMN) protein, resulting in the degeneration of alpha motoneurons in spinal cord and muscular atrophy in the limbs and trunk. One function of SMN involves RNA splicing. It is unclear why a deficiency in a housekeeping function such as RNA splicing causes profound effects only on motoneurons but not on other cell types. One difficulty in studying SMA is the scarcity of patients samples. The discovery that somatic cells can be reprogrammed to become induced pluripotent stem cell (iPSCs) raises the intriguing possibility of modeling human diseases in vitro. We reported the establishment of five iPSC lines from the fibroblasts of a type 1 SMA patient. Neuronal cultures derived from these SMA iPSC lines exhibited a reduced capacity to form motoneurons and an abnormality in neurite outgrowth. Ectopic SMN expression in these iPSC lines restored normal motoneuron differentiation and rescued the phenotype of delayed neurite outgrowth. These results suggest that the observed abnormalities are indeed caused by SMN deficiency and not by iPSC clonal variability. Further characterization of the cellular and functional deficits in motoneurons derived from these iPSCs may accelerate the exploration of the underlying mechanisms of SMA pathogenesis. STEM CELLS 2011;29:2090–2093.


Cancer Research | 2006

Cell Type and Culture Condition–Dependent Alternative Splicing in Human Breast Cancer Cells Revealed by Splicing-Sensitive Microarrays

Chunxia Li; Mitsuo Kato; Lily Shiue; John E. Shively; Manuel Ares; Ren-Jang Lin

Growing evidence indicates that alternative or aberrant pre-mRNA splicing takes place during the development, progression, and metastasis of breast cancer. However, which splicing changes that might contribute directly to tumorigenesis or cancer progression remain to be elucidated. We used splicing-sensitive microarrays to detect differences in alternative splicing between two breast cancer cell lines, MCF7 (estrogen receptor positive) and MDA-MB-231 (estrogen receptor negative), as well as cultured human mammary epithelial cells. Several splicing alterations in genes, including CD44, FAS, RBM9, hnRNPA/B, APLP2, and MYL6, were detected by the microarray and verified by reverse transcription-PCR. We also compared splicing in these breast cancer cells cultured in either two-dimensional flat dishes or in three-dimensional Matrigel conditions. Only a subset of the splicing differences that distinguish MCF7 cells from MDA-MB-231 cells under two-dimensional culture condition is retained under three-dimensional conditions, suggesting that alternative splicing events are influenced by the geometry of the culture conditions of these cells. Further characterization of splicing patterns of several genes in MCF7 cells grown in Matrigel and in xenograft in nude mice shows that splicing is similar under both conditions. Thus, our oligonucleotide microarray can effectively detect changes in alternative splicing in different cells or in the same cells grown in different environments. Our findings also illustrate the potential for understanding gene expression with resolution of alternative splicing in the study of breast cancer.


Journal of Biological Chemistry | 1998

Fission Yeast Mitotic Regulator DSK1 is an SR Protein-Specific Kinase

Zhaohua Irene Tang; Mitsuhiro Yanagida; Ren-Jang Lin

Intricate interplay may exist between pre-mRNA splicing and the cell division cycle, and fission yeast Dsk1 appears to play a role in such a connection. Previous genetic analyses have implicated Dsk1 in the regulation of chromosome segregation at the metaphase/anaphase transition. Yet, its protein sequence suggests that Dsk1 may function as a kinase specific for SR proteins, a family of pre-mRNA splicing factors containing arginine-serine repeats. Using an in vitro system with purified components, we showed that Dsk1 phosphorylated human and yeast SR proteins with high specificity. The Dsk1-phosphorylated SF2/ASF protein was recognized strongly by a monoclonal antibody (mAb104) known to bind the in vivo phosphoepitope shared by SR proteins, indicating that the phosphorylation sites resided in the RS domain. Moreover, the fission yeast U2AF65 homolog, Prp2/Mis11 protein, was phosphorylated more efficiently by Dsk1 than by a human SR protein-specific kinase, SRPK1. Thus, these in vitroresults suggest that Dsk1 is a fission yeast SR protein-specific kinase, and Prp2/Mis11 is likely an in vivo target for Dsk1. Together with previous genetic data, the studies support the notion that Dsk1 may play a role in coordinating pre-mRNA splicing and the cell division cycle.


RNA | 2000

Dominant negative mutants of the yeast splicing factor Prp2 map to a putative cleft region in the helicase domain of DExD/H-box proteins

Gretchen Edwalds-Gilbert; Dong Ho Kim; Sahn Ho Kim; Yu Hua Tseng; Ying Yu; Ren-Jang Lin

The Prp2 protein of Saccharomyces cerevisiae is an RNA-dependent ATPase required before the first transesterification reaction in pre-mRNA splicing. Prp2 binds to the spliceosome in the absence of ATP and is released following ATP hydrolysis. We determined what regions in Prp2 are essential for release from the spliceosome by analyzing dominant negative mutants in vivo and in vitro. We made mutations in conserved motif II (DExH) and motif VI (QRxGR) of the helicase (H) domain. Mutations that inactivated PRP2 had a dominant negative phenotype when overexpressed in vivo. To test whether mutations outside of the H domain could confer a dominant negative phenotype, we mutagenized a GAL1-PRP2 construct and screened for mutants unable to grow on galactose-containing media. Five dominant negative mutants were characterized; three mapped within the H domain and two mapped downstream of motif VI, indicating that an extended helicase domain is required for release of Prp2 from the spliceosome. Most mutants stalled in the spliceosome in vitro. However, not all mutants that were dominant negative in vivo were dominant negative in vitro, indicating that multiple mechanisms may cause a dominant negative phenotype. Structural modeling of the H domain of Prp2 suggests that mutants map to a cleft region found in helicases of known structure.

Collaboration


Dive into the Ren-Jang Lin's collaboration.

Top Co-Authors

Avatar

John Abelson

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiing-Kuan Yee

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marieta Gencheva

Beckman Research Institute

View shared research outputs
Top Co-Authors

Avatar

Sahn Ho Kim

Beckman Research Institute

View shared research outputs
Top Co-Authors

Avatar

Shyue-Lee Yean

Beckman Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles W. Hill

Penn State Milton S. Hershey Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge