Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jill D. Siegfried is active.

Publication


Featured researches published by Jill D. Siegfried.


American Journal of Human Genetics | 2011

Genome-wide studies of copy number variation and exome sequencing identify rare variants in BAG3 as a cause of dilated cardiomyopathy.

Nadine Norton; Duanxiang Li; Mark J. Rieder; Jill D. Siegfried; Evadnie Rampersaud; Stephan Züchner; Steve Mangos; Jorge Gonzalez-Quintana; Libin Wang; Sean McGee; Jochen Reiser; Eden R. Martin; Deborah A. Nickerson; Ray E. Hershberger

Dilated cardiomyopathy commonly causes heart failure and is the most frequent precipitating cause of heart transplantation. Familial dilated cardiomyopathy has been shown to be caused by rare variant mutations in more than 30 genes but only ~35% of its genetic cause has been identified, principally by using linkage-based or candidate gene discovery approaches. In a multigenerational family with autosomal dominant transmission, we employed whole-exome sequencing in a proband and three of his affected family members, and genome-wide copy number variation in the proband and his affected father and unaffected mother. Exome sequencing identified 428 single point variants resulting in missense, nonsense, or splice site changes. Genome-wide copy number analysis identified 51 insertion deletions and 440 copy number variants > 1 kb. Of these, a 8733 bp deletion, encompassing exon 4 of the heat shock protein cochaperone BCL2-associated athanogene 3 (BAG3), was found in seven affected family members and was absent in 355 controls. To establish the relevance of variants in this protein class in genetic DCM, we sequenced the coding exons in BAG3 in 311 other unrelated DCM probands and identified one frameshift, two nonsense, and four missense rare variants absent in 355 control DNAs, four of which were familial and segregated with disease. Knockdown of bag3 in a zebrafish model recapitulated DCM and heart failure. We conclude that new comprehensive genomic approaches have identified rare variants in BAG3 as causative of DCM.


Journal of the American College of Cardiology | 2011

Update 2011: Clinical and Genetic Issues in Familial Dilated Cardiomyopathy

Ray E. Hershberger; Jill D. Siegfried

A great deal of progress has recently been made in the discovery and understanding of the genetics of familial dilated cardiomyopathy (FDC). A consensus has emerged that with a new diagnosis of idiopathic dilated cardiomyopathy (IDC), the clinical screening of first-degree family members will reveal FDC in at least 20% to 35% of those family members. Point mutations in 31 autosomal and 2 X-linked genes representing diverse gene ontogeny have been implicated in causing FDC but account for only 30% to 35% of genetic causes. Next-generation sequencing methods have dramatically decreased sequencing costs, making clinical genetic testing feasible for extensive panels of dilated cardiomyopathy genes. Next-generation sequencing also provides opportunities to discover additional genetic causes of FDC and IDC. Guidelines for evaluation and testing of FDC and IDC are now available, and when combined with FDC genetic testing and counseling, will bring FDC/IDC genetics to the forefront of cardiovascular genetic medicine.


Circulation-heart Failure | 2009

Progress With Genetic Cardiomyopathies Screening, Counseling, and Testing in Dilated, Hypertrophic, and Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy

Ray E. Hershberger; Jason Cowan; Ana Morales; Jill D. Siegfried

This review focuses on the genetic cardiomyopathies: principally dilated cardiomyopathy, with salient features of hypertrophic cardiomyopathy and arrhythmogenic right ventricular dysplasia/cardiomyopathy, regarding genetic etiology, genetic testing, and genetic counseling. Enormous progress has recently been made in identifying genetic causes for each cardiomyopathy, and key phenotype and genotype information is reviewed. Clinical genetic testing is rapidly emerging with a principal rationale of identifying at-risk asymptomatic or disease-free relatives. Knowledge of a disease-causing mutation can guide clinical surveillance for disease onset, thereby enhancing preventive and treatment interventions. Genetic counseling is also indicated for patients and their family members regarding the symptoms of their cardiomyopathy, its inheritance pattern, family screening recommendations, and genetic testing options and possible results.


Circulation-cardiovascular Genetics | 2010

Coding sequence rare variants identified in MYBPC3, MYH6, TPM1, TNNC1, and TNNI3 from 312 patients with familial or idiopathic dilated cardiomyopathy.

Ray E. Hershberger; Nadine Norton; Ana Morales; Duanxiang Li; Jill D. Siegfried; Jorge Gonzalez-Quintana

Background—Rare variants in >30 genes have been shown to cause idiopathic or familial dilated cardiomyopathy (DCM), but the frequency of genetic causation remains poorly understood. We have previously resequenced 9 genes in a cohort of idiopathic or familial DCM probands for rare variants, and now we report resequencing results for 5 more genes with established relationships to DCM. Methods and Results—Blood samples were collected, and DNA specimens were prepared from 312 patients, 181 with familial DCM and 131 with idiopathic DCM. Genomic DNA underwent bidirectional sequencing, and DNA of additional family members underwent analysis when a rare variant was identified. We identified rare variants in 34 probands (10.9% overall), including 29 unique protein-altering rare variants and 2 splicing variants that were absent in 246 control subjects (492 chromosomes). These variants were 12 MYBPC3 (myosin-binding protein C) in 13 (4.2%) probands, 8 MYH6 (α-myosin heavy chain) in 10 (3.2%), 6 TPM1 (tropomyosin) in 6 (1.9%), 4 TNNC1 (cardiac troponin C) in 4 (1.3%), and 1 TNNI3 (cardiac troponin I) in 2 (0.6%). Variants were classified as likely or possibly disease causing in 13 and 20 probands, respectively (n=33; 10.6% overall). One MYH6 variant was classified as unlikely to be disease causing. Conclusion—Rare variants in these 5 genes likely or possibly caused 10.6% of DCM in this cohort. When combined with our prior resequencing reports, ≈27% of DCM probands had possible or likely disease-causing variants identified.


Genetics in Medicine | 2010

Clinical and genetic issues in dilated cardiomyopathy: a review for genetics professionals.

Ray E. Hershberger; Ana Morales; Jill D. Siegfried

Dilated cardiomyopathy (DCM), usually diagnosed as idiopathic dilated cardiomyopathy (IDC), has been shown to have a familial basis in 20–35% of cases. Genetic studies in familial dilated cardiomyopathy (FDC) have shown dramatic locus heterogeneity with mutations identified in >30 mostly autosomal genes showing primarily dominant transmission. Most mutations are private missense, nonsense or short insertion/deletions. Marked allelic heterogeneity is the rule. Although to date most DCM genetics fits into a Mendelian rare variant disease paradigm, this paradigm may be incomplete with only 30–35% of FDC genetic cause identified. Despite this incomplete knowledge, we predict that DCM genetics will become increasingly relevant for genetics and cardiovascular professionals. This is because DCM causes heart failure, a national epidemic, with considerable morbidity and mortality. The fact that early, even pre-symptomatic intervention can prevent or ameliorate DCM, coupled with more cost-effective genetic testing, will drive further progress in the field. Ongoing questions include: whether sporadic (IDC) disease has a genetic basis, and if so, how it differs from familial disease; which gene-specific or genetic pathways are most relevant; and whether other genetic mechanisms (e.g., DNA structural variants, epigenetics, mitochondrial mutations and others) are operative in DCM. We suggest that such new knowledge will lead to novel approaches to the prevention and treatment of DCM.


Circulation | 2010

Rare Variant Mutations in Pregnancy-Associated or Peripartum Cardiomyopathy

Ana Morales; Thomas Painter; Ran Li; Jill D. Siegfried; Duanxiang Li; Nadine Norton; Ray E. Hershberger

Background— The term peripartum cardiomyopathy (PPCM) describes dilated cardiomyopathy (DCM) without known cause that occurs during the last month of pregnancy to 5 months postpartum. A related term, pregnancy-associated cardiomyopathy (PACM), refers to DCM onset earlier in pregnancy. Multiple studies have focused on inflammatory, immunologic, and environmental causes. An alternative hypothesis is that PPCM and PACM result, in part, from a genetic cause. In this study, we sought to test the hypothesis that rare DCM-associated mutations underlie a proportion of PACM or PPCM cases. Methods and Results— A systematic search of our DCM database designed for family-based genetic studies was undertaken for cases associated with pregnancy and the postpartum period; in the identified cases, clinical and molecular genetic data, including exonic and near intron/exon boundaries of DCM genes, were analyzed. Of 4110 women from 520 pedigrees in the Familial Dilated Cardiomyopathy Research Project database, we identified 45 cases of PPCM/PACM. Evidence of familial clustering with DCM was present in 23 unrelated cases. Of the 45 cases, 19 had been resequenced for known DCM genes, and 6 carried mutations. Five had PPCM, of which 3 were familial with mutations found in MYH7, SCN5A, and PSEN2, and 2 were sporadic with mutations in MYH6 and TNNT2. One case had PACM and carried a mutation in MYBPC3. Conclusions— These findings suggest that a proportion of PPCM/PACM cases results from a genetic cause.


Clinical and Translational Science | 2010

Identification of novel mutations in RBM20 in patients with dilated cardiomyopathy.

Duanxiang Li; Ana Morales; Jorge Gonzalez-Quintana; Nadine Norton; Jill D. Siegfried; Mark Hofmeyer; Ray E. Hershberger

The genetic basis of most of dilated cardiomyopathy (DCM) cases remains unknown. A recent study indicated that mutations in a highly localized five amino acid hotspot in exon 9 of RBM20, a gene encoding a ribonucleic acid‐binding protein, caused aggressive DCM. We undertook this study to confi rm and extend the nature of RBM20 mutations in another DCM cohort. Clinical cardiovascular data, family histories, and blood samples were collected from patients with idiopathic DCM. DNA from 312 DCM probands was sequenced for nucleotide alterations in exons 6 through 9 of RBM20, and additional family members as possible. We found six unique RBM20 rare variants in six unrelated probands (1.9%). Four mutations, two of which were novel (R634W and R636C) and two previously identified (R634Q and R636H), were identified in a five amino acid hotspot in exon 6. Two other novel variants (V535I in exon 6 and R716Q in exon 9) were outside of this hotspot. Age of onset and severity of heart failure were variable, as were arrhythmias and conduction system defects, but many subjects suffered severe heart failure resulting in early death or cardiac transplantation. This article concludes that DCM in patients with RBM20 mutations is associated with advanced disease. Clin Trans Sci 2010; Volume 3: 90–97


Journal of Cardiac Failure | 2013

Temporal relationship of conduction system disease and ventricular dysfunction in LMNA cardiomyopathy

Chad R. Brodt; Jill D. Siegfried; Mark Hofmeyer; Jose A. Martel; Evadnie Rampersaud; Duanxiang Li; Ana Morales; Ray E. Hershberger

BACKGROUND LMNA cardiomyopathy presents with electrocardiogram (ECG) abnormalities, conduction system disease (CSD), and/or arrhythmias before the onset of dilated cardiomyopathy (DCM). Knowing the time interval between the onset of CSD and its progression to DCM would help to guide clinical care. METHODS AND RESULTS We evaluated family members from 16 pedigrees previously identified to carry LMNA mutations for the ages of onset of ECG abnormalities, CSD, or arrhythmia and of left ventricular enlargement (LVE) and/or systolic dysfunction. Of 103 subjects, 64 carried their family LMNA mutation, and 51 (79%) had ECG abnormalities with a mean age of onset of 41.2 years (range 18-76). Ventricular dysfunction was observed in 26 with a mean age of onset of 47.6 years (range 28-82); at diagnosis 9 had systolic dysfunction but no LVE, 5 had LVE but no systolic dysfunction, and 11 had DCM. Of 16 subjects identified with ECG abnormalities who later developed ventricular dysfunction, the median ages of onset by log-rank analyses were 41 and 48 years, respectively. CONCLUSIONS ECG abnormalities preceded DCM with a median difference of 7 years. Clinical surveillance should occur at least annually in those at risk for LMNA cardiomyopathy with any ECG findings.


Journal of Biological Chemistry | 2011

Functional Characterization of TNNC1 Rare Variants Identified in Dilated Cardiomyopathy

Jose R. Pinto; Jill D. Siegfried; Michelle S. Parvatiyar; Duanxiang Li; Nadine Norton; Michelle Jones; Jingsheng Liang; James D. Potter; Ray E. Hershberger

TNNC1, which encodes cardiac troponin C (cTnC), remains elusive as a dilated cardiomyopathy (DCM) gene. Here, we report the clinical, genetic, and functional characterization of four TNNC1 rare variants (Y5H, M103I, D145E, and I148V), all previously reported by us in association with DCM (Hershberger, R. E., Norton, N., Morales, A., Li, D., Siegfried, J. D., and Gonzalez-Quintana, J. (2010) Circ. Cardiovasc. Genet. 3, 155–161); in the previous study, two variants (Y5H and D145E) were identified in subjects who also carried MYH7 and MYBPC3 rare variants, respectively. Functional studies using the recombinant human mutant cTnC proteins reconstituted into porcine papillary skinned fibers showed decreased Ca2+ sensitivity of force development (Y5H and M103I). Furthermore, the cTnC mutants diminished (Y5H and I148V) or abolished (M103I) the effects of PKA phosphorylation on Ca2+ sensitivity. Only M103I decreased the troponin activation properties of the actomyosin ATPase when Ca2+ was present. CD spectroscopic studies of apo (absence of divalent cations)-, Mg2+-, and Ca2+/Mg2+-bound states indicated that all of the cTnC mutants (except I148V in the Ca2+/Mg2+ condition) decreased the α-helical content. These results suggest that each mutation alters the function/ability of the myofilament to bind Ca2+ as a result of modifications in cTnC structure. One variant (D145E) that was previously reported in association with hypertrophic cardiomyopathy and that produced results in vivo in this study consistent with prior hypertrophic cardiomyopathy functional studies was found associated with the MYBPC3 P910T rare variant, likely contributing to the observed DCM phenotype. We conclude that these rare variants alter the regulation of contraction in some way, and the combined clinical, molecular, genetic, and functional data reinforce the importance of TNNC1 rare variants in the pathogenesis of DCM.


Clinical and Translational Science | 2011

Assessment of LMNA Copy Number Variation in 58 Probands with Dilated Cardiomyopathy

Nadine Norton; Jill D. Siegfried; Duanxiang Li; Ray E. Hershberger

The contribution of copy number variation (CNV) to dilated cardiomyopathy (DCM) is unknown. However, estimates have suggested that CNVs could constitute 15% of mutations underlying Mendelian disease. This is of particular relevance to DCM, where only approximately 35% of genetic cause has been identified. We have previously reported 19 point mutations in LMNA, the gene encoding Lamin A/C, in a cohort of 324 unrelated DCM probands (5.9%), making it the most common genetic cause of DCM. Recently a large deletion was reported in LMNA in 1 of 25 DCM probands. To further assess the contribution of CNVs in LMNA cardiomyopathy, we used Multiplex Ligation Probe Amplification (MLPA) to screen for large deletions and duplications in 58 DCM probands negative for point mutations in LMNA. Despite excellent quality control and robust MLPA results, our study failed to identify any deletions or duplications. We conclude that at least for LMNA, point mutations are the major source of DCM causation. Clin Trans Sci 2011; Volume 4: 351–352

Collaboration


Dive into the Jill D. Siegfried's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge