Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jill L. Ostrem is active.

Publication


Featured researches published by Jill L. Ostrem.


Neuropsychologia | 1995

Physiological activation of a cortical network during performance of the Wisconsin Card Sorting Test: A positron emission tomography study

Karen Faith Berman; Jill L. Ostrem; Christopher Randolph; James M. Gold; Terry E. Goldberg; Richard Coppola; Richard E. Carson; Peter Herscovitch; Daniel R. Weinberger

To determine the neural circuitry engaged by performance of the Wisconsin Card Sorting Test (WCST), a neuropsychological test traditionally considered to be sensitive to prefrontal lesions, regional cerebral blood flow was measured with oxygen-15 water and positron emission tomography (PET) while young normal subjects performed the test as well as while they performed a specially designed sensorimotor control task. To consider which of the various cognitive operations and other experiential phenomena involved in the WCST PET scan are critical for the pattern of physiological activation and to focus on the working memory component of the test, repeat WCST scans were also performed on nine of the subjects after instruction on the test and practice to criteria. We confirmed that performance of the WCST engages the frontal cortex and also produces activation of a complex network of regions consistently including the inferior parietal lobule but also involving the visual association and inferior temporal cortices as well as portions of the cerebellum. The WCST activation in the dorsolateral prefrontal cortex (DLPFC) remained significant even after training and practice on the test, suggesting that working memory may be largely responsible for the physiological response in DLPFC during the WCST and, conversely, that the DLPFC plays a major role in modulating working memory.


Lancet Neurology | 2008

Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2–neurturin) to patients with idiopathic Parkinson's disease: an open-label, phase I trial

William J. Marks; Jill L. Ostrem; Leonard Verhagen; Philip A. Starr; Paul S. Larson; Roy A. E. Bakay; Robin Taylor; Deborah A. Cahn-Weiner; A. Jon Stoessl; C. Warren Olanow; Raymond T. Bartus

BACKGROUND There is an urgent need for therapies that slow or reverse the progression of Parkinsons disease (PD). Neurotrophic factors can improve the function of degenerating neurons and protect against further neurodegeneration, and gene transfer might be a means to deliver effectively these factors to the brain. The aim of this study was to assess the safety, tolerability, and potential efficacy of gene delivery of the neurotrophic factor neurturin. METHODS In this phase I, open-label clinical trial, 12 patients aged 35-75 years with a diagnosis of PD for at least 5 years in accordance with the UK Brain Bank Criteria received bilateral, stereotactic, intraputaminal injections of adeno-associated virus serotype 2-neurturin (CERE-120). The first six patients received doses of 1.3x10(11) vector genomes (vg)/patient, and the next six patients received 5.4x10(11) vg/patient. This trial is registered with ClinicalTrials.gov, number NCT00252850. FINDINGS The procedure was well tolerated. Extensive safety monitoring in all patients revealed no clinically significant adverse events at 1 year. Several secondary measures of motor function showed improvement at 1 year; for example, a mean improvement in the off-medication motor subscore of the Unified Parkinsons Disease Rating Scale (UPDRS) of 14 points (SD 8; p=0.000121 [36% mean increase; p=0.000123]) and a mean increase of 2.3 h (2; 25% group mean increase; p=0.0250) in on time without troublesome dyskinesia were seen. Improvements in several secondary measures were not significant, including the timed walking test in the off condition (p=0.053), the Purdue pegboard test of hand dexterity (p=0.318), the reduction in off time (p=0.105), and the activities of daily living subscore (part II) of the UPDRS (p=0.080). (18)F-levodopa-uptake PET did not change after treatment with either dose of CERE-120. INTERPRETATION The initial data support the safety, tolerability, and potential efficacy of CERE-120 as a possible treatment for PD; however, these results must be viewed as preliminary until data from blinded, controlled clinical trials are available. FUNDING Ceregene; Michael J Fox Foundation for Parkinsons Research.


Lancet Neurology | 2010

Gene delivery of AAV2-neurturin for Parkinson's disease: a double-blind, randomised, controlled trial

William J. Marks; Raymond T. Bartus; Joao Siffert; Charles S Davis; Andres M. Lozano; Nicholas M. Boulis; Jerrold L. Vitek; Mark Stacy; Dennis A. Turner; Leonard Verhagen; Roy A. E. Bakay; Raymond G. Watts; Barton L. Guthrie; Joseph Jankovic; Richard K. Simpson; Michele Tagliati; Ron L. Alterman; Matthew B. Stern; Gordon H. Baltuch; Philip A. Starr; Paul S. Larson; Jill L. Ostrem; John G. Nutt; Karl Kieburtz; Jeffrey H. Kordower; C. Warren Olanow

BACKGROUND In an open-label phase 1 trial, gene delivery of the trophic factor neurturin via an adeno-associated type-2 vector (AAV2) was well tolerated and seemed to improve motor function in patients with advanced Parkinsons disease. We aimed to assess the safety and efficacy of AAV2-neurturin in a double-blind, phase 2 randomised trial. METHODS We did a multicentre, double-blind, sham-surgery controlled trial in patients with advanced Parkinsons disease. Patients were randomly assigned (2:1) by a central, computer generated, randomisation code to receive either AAV2-neurturin (5·4 × 10¹¹ vector genomes) injected bilaterally into the putamen or sham surgery. All patients and study personnel with the exception of the neurosurgical team were masked to treatment assignment. The primary endpoint was change from baseline to 12 months in the motor subscore of the unified Parkinsons disease rating scale in the practically-defined off state. All randomly assigned patients who had at least one assessment after baseline were included in the primary analyses. This trial is registered at ClinicalTrials.gov, NCT00400634. RESULTS Between December, 2006, and November, 2008, 58 patients from nine sites in the USA participated in the trial. There was no significant difference in the primary endpoint in patients treated with AAV2-neurturin compared with control individuals (difference -0·31 [SE 2·63], 95% CI -5·58 to 4·97; p=0·91). Serious adverse events occurred in 13 of 38 patients treated with AAV2-neurturin and four of 20 control individuals. Three patients in the AAV2-neurturin group and two in the sham surgery group developed tumours. INTERPRETATION Intraputaminal AAV2-neurturin is not superior to sham surgery when assessed using the UPDRS motor score at 12 months. However, the possibility of a benefit with additional targeting of the substantia nigra and longer term follow-up should be investigated in further studies. FUNDING Ceregene and Michael J Fox Foundation for Parkinsons Research.


Journal of Neurosurgery | 2006

Microelectrode-guided implantation of deep brain stimulators into the globus pallidus internus for dystonia: techniques, electrode locations, and outcomes

Philip A. Starr; Robert S. Turner; Geoff Rau; Nadja Lindsey; Susan Heath; Monica Volz; Jill L. Ostrem; William J. Marks

Object. Deep brain stimulation (DBS) of the globus pallidus internus (GPi) is a promising new procedure for the treatment of dystonia. The authors present their technical approach for placement of electrodes into the GPi in awake patients with dystonia, including the methodology used for electrophysiological mapping of the GPi in the dystonic state, clinical outcomes and complications, and the location of electrodes associated with optimal benefit. Methods. Twenty-three adult and pediatric patients who had various forms of dystonia were included in this study. Baseline neurological status and improvement in motor function resulting from DBS were measured using the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS). Implantation of the DBS lead was performed using magnetic resonance (MR) imaging-based stereotaxy, single-cell microelectrode recording, and intraoperative test stimulation to determine thresholds for stimulation-induced adverse effects. Electrode locations were measured on computationally reformatted postoperative MR images according to a prospective protocol. Conclusions. Physiologically guided implantation of DBS electrodes in patients with dystonia is technically feasible in the awake state in most cases, with low morbidity rates. Spontaneous discharge rates of GPi neurons in dystonia are similar to those of globus pallidus externus neurons, such that the two nuclei must be distinguished by neuronal discharge patterns rather than by rates. Active electrode locations associated with robust improvement (> 50% decrease in BFMDRS score) were located near the intercommissural plane, at a mean distance of 3.7 mm from the pallidocapsular border. Patients with juvenile-onset primary dystonia and those with the tardive form benefited greatly from this procedure, whereas benefits for most secondary dystonias and the adult-onset craniocervical form of this disorder were more modest.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Exaggerated phase–amplitude coupling in the primary motor cortex in Parkinson disease

Coralie de Hemptinne; Elena S. Ryapolova-Webb; Ellen L. Air; Paul A. Garcia; Kai J. Miller; Jeffrey G. Ojemann; Jill L. Ostrem; Nicholas B. Galifianakis; Philip A. Starr

An important mechanism for large-scale interactions between cortical areas involves coupling between the phase and the amplitude of different brain rhythms. Could basal ganglia disease disrupt this mechanism? We answered this question by analysis of local field potentials recorded from the primary motor cortex (M1) arm area in patients undergoing neurosurgery. In Parkinson disease, coupling between β-phase (13–30 Hz) and γ-amplitude (50–200 Hz) in M1 is exaggerated compared with patients with craniocervical dystonia and humans without a movement disorder. Excessive coupling may be reduced by therapeutic subthalamic nucleus stimulation. Peaks in M1 γ-amplitude are coupled to, and precede, the subthalamic nucleus β-trough. The results prompt a model of the basal ganglia–cortical circuit in Parkinson disease incorporating phase–amplitude interactions and abnormal corticosubthalamic feedback and suggest that M1 local field potentials could be used as a control signal for automated programming of basal ganglia stimulators.


Nature Neuroscience | 2015

Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson's disease

Coralie de Hemptinne; Nicole C. Swann; Jill L. Ostrem; Elena S. Ryapolova-Webb; Marta San Luciano; Nicholas B. Galifianakis; Philip A. Starr

Deep brain stimulation (DBS) is increasingly applied for the treatment of brain disorders, but its mechanism of action remains unknown. Here we evaluate the effect of basal ganglia DBS on cortical function using invasive cortical recordings in Parkinsons disease (PD) patients undergoing DBS implantation surgery. In the primary motor cortex of PD patients, neuronal population spiking is excessively synchronized to the phase of network oscillations. This manifests in brain surface recordings as exaggerated coupling between the phase of the beta rhythm and the amplitude of broadband activity. We show that acute therapeutic DBS reversibly reduces phase-amplitude interactions over a similar time course as that of the reduction in parkinsonian motor signs. We propose that DBS of the basal ganglia improves cortical function by alleviating excessive beta phase locking of motor cortex neurons.


Movement Disorders | 2007

Pallidal deep brain stimulation in patients with cranial–cervical dystonia (Meige syndrome)

Jill L. Ostrem; William J. Marks; Monica Volz; Susan Heath; Philip A. Starr

Idiopathic cranial–cervical dystonia (ICCD) is an adult‐onset dystonia syndrome affecting orbicularis oculi, facial, oromandibular, and cervical musculature. ICCD is frequently difficult to treat medically. Deep brain stimulation (DBS) of the globus pallidus internus (GPi) is a highly effective treatment for idiopathic generalized dystonia, however less is known about the effect of GPi DBS on ICCD. In this article, we present the results from a pilot study assessing the effect of GPi DBS in a series of patients with ICCD. Six patients underwent bilateral stereotactic implantation of DBS leads into the sensorimotor GPi. Patients were evaluated with the Burke–Fahn–Marsden dystonia rating scale (BFMDRS) and Toronto western spamodic torticollis rating scale (TWSTRS) before surgery and 6 months postoperatively. At 6 months, patients showed a 72% mean improvement in the BFMDRS total movement score (P < 0.028, Wilcoxin signed rank test). The mean BFMDRS disability score showed a trend toward improvement (P < 0.06). The total TWSTRS score improved 54% (P < 0.043). Despite improvement in dystonia, mild worsening of motor function was reported in previously nondystonic body regions with stimulation in 4 patients. Although GPi DBS was effective in these patients, the influence of GPi DBS on nondystonic body regions deserves further investigation.


Neurotherapeutics | 2008

Treatment of dystonia with deep brain stimulation

Jill L. Ostrem; Philip A. Starr

SummaryPallidal deep brain stimulation (DBS) is an established treatment option for medically refractive dystonia. The mechanism by which globus pallidus pars interna (GPi) DBS improves dystonia is still unclear. Primary generalized dystonia usually responds well to this therapy, as recently confirmed in two well-designed, double-blind, controlled trials; however, predictors of outcome within this population are not well known. The role of GPi DBS in idiopathic cervical dystonia resistant to treatment with botulinum toxin, in tardive dystonia, and in some types of secondary dystonia are emerging as populations of patients who may also benefit, but outcomes are not well documented. Serious complications from this therapy are rare. Future research will likely continue to address the most appropriate programming settings for various populations of dystonia, the mechanism by which DBS affects dystonia, and the possibility of alternative brain targets that might have less associated side effects or greater efficacy than the GPi.


Brain | 2010

Dystonia in neurodegeneration with brain iron accumulation: outcome of bilateral pallidal stimulation.

Lars Timmermann; K. A. M. Pauls; K. Wieland; Robert Jech; G. Kurlemann; Nutan Sharma; Steven S. Gill; C. A. Haenggeli; Susan J. Hayflick; Penny Hogarth; Klaus L. Leenders; Patricia Limousin; C. J. Malanga; Elena Moro; Jill L. Ostrem; Fredy J. Revilla; Patrick Santens; Alfons Schnitzler; Stephen Tisch; Francesc Valldeoriola; Jan Vesper; Jens Volkmann; D. Woitalla; S. Peker

Neurodegeneration with brain iron accumulation encompasses a heterogeneous group of rare neurodegenerative disorders that are characterized by iron accumulation in the brain. Severe generalized dystonia is frequently a prominent symptom and can be very disabling, causing gait impairment, difficulty with speech and swallowing, pain and respiratory distress. Several case reports and one case series have been published concerning therapeutic outcome of pallidal deep brain stimulation in dystonia caused by neurodegeneration with brain iron degeneration, reporting mostly favourable outcomes. However, with case studies, there may be a reporting bias towards favourable outcome. Thus, we undertook this multi-centre retrospective study to gather worldwide experiences with bilateral pallidal deep brain stimulation in patients with neurodegeneration with brain iron accumulation. A total of 16 centres contributed 23 patients with confirmed neurodegeneration with brain iron accumulation and bilateral pallidal deep brain stimulation. Patient details including gender, age at onset, age at operation, genetic status, magnetic resonance imaging status, history and clinical findings were requested. Data on severity of dystonia (Burke Fahn Marsden Dystonia Rating Scale—Motor Scale, Barry Albright Dystonia Scale), disability (Burke Fahn Marsden Dystonia Rating Scale—Disability Scale), quality of life (subjective global rating from 1 to 10 obtained retrospectively from patient and caregiver) as well as data on supportive therapy, concurrent pharmacotherapy, stimulation settings, adverse events and side effects were collected. Data were collected once preoperatively and at 2–6 and 9–15 months postoperatively. The primary outcome measure was change in severity of dystonia. The mean improvement in severity of dystonia was 28.5% at 2–6 months and 25.7% at 9–15 months. At 9–15 months postoperatively, 66.7% of patients showed an improvement of 20% or more in severity of dystonia, and 31.3% showed an improvement of 20% or more in disability. Global quality of life ratings showed a median improvement of 83.3% at 9–15 months. Severity of dystonia preoperatively and disease duration predicted improvement in severity of dystonia at 2–6 months; this failed to reach significance at 9–15 months. The study confirms that dystonia in neurodegeneration with brain iron accumulation improves with bilateral pallidal deep brain stimulation, although this improvement is not as great as the benefit reported in patients with primary generalized dystonias or some other secondary dystonias. The patients with more severe dystonia seem to benefit more. A well-controlled, multi-centre prospective study is necessary to enable evidence-based therapeutic decisions and better predict therapeutic outcomes.


NeuroImage | 1998

Uncoupling Cognitive Workload and Prefrontal Cortical Physiology: A PET rCBF Study

Terry E. Goldberg; Karen Faith Berman; Kirsten Fleming; Jill L. Ostrem; John D. Van Horn; G. Esposito; Venkata S. Mattay; James M. Gold; Daniel R. Weinberger

Working memory is a fundamental cognitive building block involved in the short-term maintenance and transformation of information. In neuropsychological studies, working memory has been shown to be of limited capacity; however, the neurophysiological concomitants of this capacity limitation have not been explored. In this study we used the [15O] water PET rCBF technique and statistical parametric mapping to examine normal subjects while they performed two cognitive tasks, both individually and simultaneously. One task was the Wisconsin Card Sorting Test, a complex reasoning task involving working memory, and the other was a rapidly paced auditory verbal shadowing task. When both tasks were performed simultaneously, there were significant decrements in performance compared with the individual task performance scores, indicating that cognitive workload had been increased. Analysis of the rCBF maps showed that when the two tasks were performed together, in contrast to when they were performed separately, there was less prefrontal activation. These results suggest that increases in cognitive workload do not necessarily recruit and then sustain cortical neurophysiological resources to a maximum, but rather may actually be accompanied by a diminution in cortical activity.

Collaboration


Dive into the Jill L. Ostrem's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul S. Larson

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monica Volz

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge