Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Coralie de Hemptinne is active.

Publication


Featured researches published by Coralie de Hemptinne.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Exaggerated phase–amplitude coupling in the primary motor cortex in Parkinson disease

Coralie de Hemptinne; Elena S. Ryapolova-Webb; Ellen L. Air; Paul A. Garcia; Kai J. Miller; Jeffrey G. Ojemann; Jill L. Ostrem; Nicholas B. Galifianakis; Philip A. Starr

An important mechanism for large-scale interactions between cortical areas involves coupling between the phase and the amplitude of different brain rhythms. Could basal ganglia disease disrupt this mechanism? We answered this question by analysis of local field potentials recorded from the primary motor cortex (M1) arm area in patients undergoing neurosurgery. In Parkinson disease, coupling between β-phase (13–30 Hz) and γ-amplitude (50–200 Hz) in M1 is exaggerated compared with patients with craniocervical dystonia and humans without a movement disorder. Excessive coupling may be reduced by therapeutic subthalamic nucleus stimulation. Peaks in M1 γ-amplitude are coupled to, and precede, the subthalamic nucleus β-trough. The results prompt a model of the basal ganglia–cortical circuit in Parkinson disease incorporating phase–amplitude interactions and abnormal corticosubthalamic feedback and suggest that M1 local field potentials could be used as a control signal for automated programming of basal ganglia stimulators.


Nature Neuroscience | 2015

Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson's disease

Coralie de Hemptinne; Nicole C. Swann; Jill L. Ostrem; Elena S. Ryapolova-Webb; Marta San Luciano; Nicholas B. Galifianakis; Philip A. Starr

Deep brain stimulation (DBS) is increasingly applied for the treatment of brain disorders, but its mechanism of action remains unknown. Here we evaluate the effect of basal ganglia DBS on cortical function using invasive cortical recordings in Parkinsons disease (PD) patients undergoing DBS implantation surgery. In the primary motor cortex of PD patients, neuronal population spiking is excessively synchronized to the phase of network oscillations. This manifests in brain surface recordings as exaggerated coupling between the phase of the beta rhythm and the amplitude of broadband activity. We show that acute therapeutic DBS reversibly reduces phase-amplitude interactions over a similar time course as that of the reduction in parkinsonian motor signs. We propose that DBS of the basal ganglia improves cortical function by alleviating excessive beta phase locking of motor cortex neurons.


The Journal of Neuroscience | 2016

Gamma Oscillations in the Hyperkinetic State Detected with Chronic Human Brain Recordings in Parkinson's Disease

Nicole C. Swann; Coralie de Hemptinne; Svjetlana Miocinovic; Salman Qasim; Sarah S. Wang; Nathan Ziman; Jill L. Ostrem; Marta San Luciano; Nicholas B. Galifianakis; Philip A. Starr

Hyperkinetic states are common in human movement disorders, but their neural basis remains uncertain. One such condition is dyskinesia, a serious adverse effect of medical and surgical treatment for Parkinsons disease (PD). To study this, we used a novel, totally implanted, bidirectional neural interface to obtain multisite long-term recordings. We focus our analysis on two patients with PD who experienced frequent dyskinesia and studied them both at rest and during voluntary movement. We show that dyskinesia is associated with a narrowband gamma oscillation in motor cortex between 60 and 90 Hz, a similar, though weaker, oscillation in subthalamic nucleus, and strong phase coherence between the two. Dyskinesia-related oscillations are minimally affected by voluntary movement. When dyskinesia persists during therapeutic deep brain stimulation (DBS), the peak frequency of this signal shifts to half the stimulation frequency. These findings suggest a circuit-level mechanism for the generation of dyskinesia as well as a promising control signal for closed-loop DBS. SIGNIFICANCE STATEMENT Oscillations in brain networks link functionally related brain areas to accomplish thought and action, but this mechanism may be altered or exaggerated by disease states. Invasive recording using implanted electrodes provides a degree of spatial and temporal resolution that is ideal for analysis of network oscillations. Here we used a novel, totally implanted, bidirectional neural interface for chronic multisite brain recordings in humans with Parkinsons disease. We characterized an oscillation between cortex and subcortical modulators that is associated with a serious adverse effect of therapy for Parkinsons disease: dyskinesia. The work shows how a perturbation in oscillatory dynamics might lead to a state of excessive movement and also suggests a possible biomarker for feedback-controlled neurostimulation to treat hyperkinetic disorders.


The Journal of Neuroscience | 2008

Neuronal bases of directional expectation and anticipatory pursuit.

Coralie de Hemptinne; Philippe Lefèvre; Marcus Missal

Expectation of upcoming events is an essential cognitive function on which anticipatory actions are based. The neuronal basis of this prospective representation is poorly understood. We trained rhesus monkeys in a smooth-pursuit task in which the direction of upcoming target motion was indicated using a color cue. Under these conditions, directional expectation frequently evoked anticipatory smooth movements. We found that the activity of a population of neurons in the supplementary eye fields encoded the expected future direction of the target. Neuronal activity increased after presentation of the cue, indicating future target motion in the preferred direction. Neuronal activity either remained unaltered or was reduced if the antipreferred direction was cued. In addition, ∼30% of these neurons were more active during trials with anticipatory pursuit in the preferred direction than during trials when monkeys did not anticipate target motion onset. This subset of recorded neurons encoded the direction of the subsequent anticipatory pursuit. We hypothesize that the neural representation of directional expectation could be conceptualized as a competitive interaction between pools of neurons representing likely future events, with the winner of this competition determining the direction of the subsequent anticipatory movement. Similar mechanisms could drive prediction before movement initiation in other motor domains.


Journal of Neural Engineering | 2014

Chronic cortical and electromyographic recordings from a fully implantable device: preclinical experience in a nonhuman primate

Elena S. Ryapolova-Webb; Pedram Afshar; Scott R. Stanslaski; Tim Denison; Coralie de Hemptinne; Krystof S. Bankiewicz; Philip A. Starr

OBJECTIVE Analysis of intra- and perioperatively recorded cortical and basal ganglia local field potentials in human movement disorders has provided great insight into the pathophysiology of diseases such as Parkinsons, dystonia, and essential tremor. However, in order to better understand the network abnormalities and effects of chronic therapeutic stimulation in these disorders, long-term recording from a fully implantable data collection system is needed. APPROACH A fully implantable investigational data collection system, the Activa® PC + S neurostimulator (Medtronic, Inc., Minneapolis, MN), has been developed for human use. Here, we tested its utility for extended intracranial recording in the motor system of a nonhuman primate. The system was attached to two quadripolar paddle arrays: one covering sensorimotor cortex, and one covering a proximal forelimb muscle, to study simultaneous cortical field potentials and electromyography during spontaneous transitions from rest to movement. MAIN RESULTS Over 24 months of recording, movement-related changes in physiologically relevant frequency bands were readily detected, including beta and gamma signals at approximately 2.5 μV/[Formula: see text] and 0.7 μV/[Formula: see text], respectively. The system architecture allowed for flexible recording configurations and algorithm triggered data recording. In the course of physiological analyses, sensing artifacts were observed (∼1 μVrms stationary tones at fixed frequency), which were mitigated either with post-processing or algorithm design and did not impact the scientific conclusions. Histological examination revealed no underlying tissue damage; however, a fibrous capsule had developed around the paddles, demonstrating a potential mechanism for the observed signal amplitude reduction. SIGNIFICANCE This study establishes the usefulness of this system in measuring chronic brain and muscle signals. Use of this system may potentially be valuable in human trials of chronic brain recording in movement disorders, a next step in the design of closed-loop neurostimulation paradigms.


Neurobiology of Disease | 2016

Subthalamic local field potentials in Parkinson's disease and isolated dystonia: An evaluation of potential biomarkers.

Doris D. Wang; Coralie de Hemptinne; Svjetlana Miocinovic; Salman Qasim; Andrew Miller; Jill L. Ostrem; Nicholas B. Galifianakis; Marta San Luciano; Philip A. Starr

Local field potentials (LFP) recorded from the subthalamic nucleus in patients with Parkinsons disease (PD) demonstrate prominent oscillations in the beta (13-30 Hz) frequency range, and reduction of beta band spectral power by levodopa and deep brain stimulation (DBS) is correlated with motor symptom improvement. Several features of beta activity have been theorized to be specific biomarkers of the parkinsonian state, though these have rarely been studied in non-parkinsonian conditions. To compare resting state LFP features in PD and isolated dystonia and evaluate disease-specific biomarkers, we recorded subthalamic LFPs from 28 akinetic-rigid PD and 12 isolated dystonia patients during awake DBS implantation. Spectral power and phase-amplitude coupling characteristics were analyzed. In 26/28 PD and 11/12 isolated dystonia patients, the LFP power spectrum had a peak in the beta frequency range, with similar amplitudes between groups. Resting state power did not differ between groups in the theta (5-8 Hz), alpha (8-12 Hz), beta (13-30 Hz), broadband gamma (50-200 Hz), or high frequency oscillation (HFO, 250-350 Hz) bands. Analysis of phase-amplitude coupling between low frequency phase and HFO amplitude revealed significant interactions in 19/28 PD and 6/12 dystonia recordings without significant differences in maximal coupling or preferred phase. Two features of subthalamic LFPs that have been proposed as specific parkinsonian biomarkers, beta power and coupling of beta phase to HFO amplitude, were also present in isolated dystonia, including focal dystonias. This casts doubt on the utility of these metrics as disease-specific diagnostic biomarkers.


The Journal of Neuroscience | 2007

How Do Primates Anticipate Uncertain Future Events

Coralie de Hemptinne; Sylvie Nozaradan; Quentin Duvivier; Philippe Lefèvre; Marcus Missal

The timing of an upcoming event depends on two factors: its temporal position, proximal or distal with respect to the present moment, and the unavoidable stochastic variability around this temporal position. We searched for a general mechanism that could describe how these two factors influence the anticipation of an upcoming event in an oculomotor task. Monkeys were trained to pursue a moving target with their eyes. During a delay period inserted before target motion onset, anticipatory pursuit responses were frequently observed. We found that anticipatory movements were altered by the temporal position of the target. Increasing the timing uncertainty associated with the stimulus resulted in an increase in the width of the latency distribution of anticipatory pursuit. These results show that monkeys relied on an estimation of the changing probability of target motion onset as time elapsed during the delay to decide when to initiate an anticipatory smooth eye movement.


The Journal of Neuroscience | 2017

Nonsinusoidal Beta Oscillations Reflect Cortical Pathophysiology in Parkinson's Disease

Scott R. Cole; Roemer van der Meij; Erik Peterson; Coralie de Hemptinne; Philip A. Starr; Bradley Voytek

Oscillations in neural activity play a critical role in neural computation and communication. There is intriguing new evidence that the nonsinusoidal features of the oscillatory waveforms may inform underlying physiological and pathophysiological characteristics. Time-domain waveform analysis approaches stand in contrast to traditional Fourier-based methods, which alter or destroy subtle waveform features. Recently, it has been shown that the waveform features of oscillatory beta (13–30 Hz) events, a prominent motor cortical oscillation, may reflect near-synchronous excitatory synaptic inputs onto cortical pyramidal neurons. Here we analyze data from invasive human primary motor cortex (M1) recordings from patients with Parkinsons disease (PD) implanted with a deep brain stimulator (DBS) to test the hypothesis that the beta waveform becomes less sharp with DBS, suggesting that M1 input synchrony may be decreased. We find that, in PD, M1 beta oscillations have sharp, asymmetric, nonsinusoidal features, specifically asymmetries in the ratio between the sharpness of the beta peaks compared with the troughs. This waveform feature is nearly perfectly correlated with beta-high gamma phase-amplitude coupling (r = 0.94), a neural index previously shown to track PD-related motor deficit. Our results suggest that the pathophysiological beta generator is altered by DBS, smoothing out the beta waveform. This has implications not only for the interpretation of the physiological mechanism by which DBS reduces PD-related motor symptoms, but more broadly for our analytic toolkit in general. That is, the often-overlooked time-domain features of oscillatory waveforms may carry critical physiological information about neural processes and dynamics. SIGNIFICANCE STATEMENT To better understand the neural basis of cognition and disease, we need to understand how groups of neurons interact to communicate with one another. For example, there is evidence that parkinsonian bradykinesia and rigidity may arise from an oversynchronization of afferents to the motor cortex, and that these symptoms are treatable using deep brain stimulation. Here we show that the waveform shape of beta (13–30 Hz) oscillations, which may reflect input synchrony onto the cortex, is altered by deep brain stimulation. This suggests that mechanistic inferences regarding physiological and pathophysiological neural communication may be made from the temporal dynamics of oscillatory waveform shape.


Neurobiology of Disease | 2016

Electrocorticography reveals beta desynchronization in the basal ganglia-cortical loop during rest tremor in Parkinson's disease ☆

Salman Qasim; Coralie de Hemptinne; Nicole C. Swann; Svjetlana Miocinovic; Jill L. Ostrem; Philip A. Starr

The pathophysiology of rest tremor in Parkinsons disease (PD) is not well understood, and its severity does not correlate with the severity of other cardinal signs of PD. We hypothesized that tremor-related oscillatory activity in the basal-ganglia-thalamocortical loop might serve as a compensatory mechanism for the excessive beta band synchronization associated with the parkinsonian state. We recorded electrocorticography (ECoG) from the sensorimotor cortex and local field potentials (LFP) from the subthalamic nucleus (STN) in patients undergoing lead implantation for deep brain stimulation (DBS). We analyzed differences in measures of network synchronization during epochs of spontaneous rest tremor, versus epochs without rest tremor, occurring in the same subjects. The presence of tremor was associated with reduced beta power in the cortex and STN. Cortico-cortical coherence and phase-amplitude coupling (PAC) decreased during rest tremor, as did basal ganglia-cortical coherence in the same frequency band. Cortical broadband gamma power was not increased by tremor onset, in contrast to the movement-related gamma increase typically observed at the onset of voluntary movement. These findings suggest that the cortical representation of rest tremor is distinct from that of voluntary movement, and support a model in which tremor acts to decrease beta band synchronization within the basal ganglia-cortical loop.


Frontiers in Neuroscience | 2016

Proceedings of the Third Annual Deep Brain Stimulation Think Tank: A Review of Emerging Issues and Technologies

P. Justin Rossi; Aysegul Gunduz; Jack W. Judy; Linda Wilson; Andre G. Machado; James Giordano; W. Jeff Elias; Marvin A. Rossi; Christopher L. Butson; Michael D. Fox; Cameron C. McIntyre; Nader Pouratian; Nicole C. Swann; Coralie de Hemptinne; Robert E. Gross; Howard Jay Chizeck; Michele Tagliati; Andres M. Lozano; Wayne K. Goodman; Jean Philippe Langevin; Ron L. Alterman; Umer Akbar; Greg A. Gerhardt; Warren M. Grill; Mark Hallett; Todd M. Herrington; Jeffrey Herron; Craig van Horne; Brian H. Kopell; Anthony E. Lang

The proceedings of the 3rd Annual Deep Brain Stimulation Think Tank summarize the most contemporary clinical, electrophysiological, imaging, and computational work on DBS for the treatment of neurological and neuropsychiatric disease. Significant innovations of the past year are emphasized. The Think Tanks contributors represent a unique multidisciplinary ensemble of expert neurologists, neurosurgeons, neuropsychologists, psychiatrists, scientists, engineers, and members of industry. Presentations and discussions covered a broad range of topics, including policy and advocacy considerations for the future of DBS, connectomic approaches to DBS targeting, developments in electrophysiology and related strides toward responsive DBS systems, and recent developments in sensor and device technologies.

Collaboration


Dive into the Coralie de Hemptinne's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jill L. Ostrem

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Salman Qasim

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Miller

University of California

View shared research outputs
Top Co-Authors

Avatar

Doris D. Wang

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge