Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jill Lindner is active.

Publication


Featured researches published by Jill Lindner.


Journal of Biological Chemistry | 1999

Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase.

Catherine Postic; Masakazu Shiota; Kevin D. Niswender; T. L. Jetton; Yeujin Chen; J. M. Moates; Kathy D. Shelton; Jill Lindner; Alan D. Cherrington; Mark A. Magnuson

Glucokinase (GK) gene mutations cause diabetes mellitus in both humans and mouse models, but the pathophysiological basis is only partially defined. We have used cre-loxPtechnology in combination with gene targeting to perform global, β cell-, and hepatocyte-specific gene knock-outs of this enzyme in mice. Gene targeting was used to create a triple-loxed gk allele, which was converted by partial or total Cre-mediated recombination to a conditional allele lacking neomycin resistance, or to a null allele, respectively. β cell- and hepatocyte-specific expression of Cre was achieved using transgenes that contain either insulin or albumin promoter/enhancer sequences. By intercrossing the transgenic mice that express Cre in a cell-specific manner with mice containing a conditional gk allele, we obtained animals with either a β cell or hepatocyte-specific knock-out of GK. Animals either globally deficient in GK, or lacking GK just in β cells, die within a few days of birth from severe diabetes. Mice that are heterozygous null for GK, either globally or just in the β cell, survive but are moderately hyperglycemic. Mice that lack GK only in the liver are only mildly hyperglycemic but display pronounced defects in both glycogen synthesis and glucose turnover rates during a hyperglycemic clamp. Interestingly, hepatic GK knock-out mice also have impaired insulin secretion in response to glucose. These studies indicate that deficiencies in both β cell and hepatic GK contribute to the hyperglycemia of MODY-2.


Proceedings of the National Academy of Sciences of the United States of America | 2005

Deletion of PPARγ in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance

Julie R. Jones; Cordelia Barrick; Kyoung-Ah Kim; Jill Lindner; Bertrand Blondeau; Yuka Fujimoto; Masakazu Shiota; Robert A. Kesterson; Barbara B. Kahn; Mark A. Magnuson

Peroxisome proliferator-activated receptor γ (PPARγ) plays a crucial role in adipocyte differentiation, glucose metabolism, and other physiological processes. To further explore the role of PPARγ in adipose tissues, we used a Cre/loxP strategy to generate adipose-specific PPARγ knockout mice. These animals exhibited marked abnormalities in the formation and function of both brown and white adipose tissues. When fed a high-fat diet, adipose-specific PPARγ knockout mice displayed diminished weight gain despite hyperphagia, had diminished serum concentrations of both leptin and adiponectin, and did not develop glucose intolerance or insulin resistance. Characterization of in vivo glucose dynamics pointed to improved hepatic glucose metabolism as the basis for preventing high-fat diet-induced insulin resistance. Our findings further illustrate the essential role for PPARγ in the development of adipose tissues and suggest that a compensatory induction of hepatic PPARγ may stimulate an increase in glucose disposal by the liver.


Journal of Biological Chemistry | 2002

Sulfonylurea Receptor Type 1 Knock-out Mice Have Intact Feeding-stimulated Insulin Secretion despite Marked Impairment in Their Response to Glucose

Chiyo Shiota; Olof Larsson; Kathy D. Shelton; Masakazu Shiota; Alexander M. Efanov; Marianne Høy; Jill Lindner; Suwattanee Kooptiwut; Lisa Juntti-Berggren; Jesper Gromada; Per-Olof Berggren; Mark A. Magnuson

The ATP-sensitive potassium channel is a key molecular complex for glucose-stimulated insulin secretion in pancreatic β cells. In humans, mutations in either of the two subunits for this channel, the sulfonylurea type 1 receptor (Sur1) or Kir6.2, cause persistent hyperinsulinemic hypoglycemia of infancy. We have generated and characterized Sur1 null mice. Interestingly, these animals remain euglycemic for a large portion of their life despite constant depolarization of membrane, elevated cytoplasmic free Ca2+ concentrations, and intact sensitivity of the exocytotic machinery to Ca2+. A comparison of glucose- and meal-stimulated insulin secretion showed that, although Sur1 null mice do not secrete insulin in response to glucose, they secrete nearly normal amounts of insulin in response to feeding. Because Sur1 null mice lack an insulin secretory response to GLP-1, even though their islets exhibit a normal rise in cAMP by GLP-1, we tested their response to cholinergic stimulation. We found that perfused Sur1 null pancreata secreted insulin in response to the cholinergic agonist carbachol in a glucose-dependent manner. Together, these findings suggest that cholinergic stimulation is one of the mechanisms that compensate for the severely impaired response to glucose and GLP-1 brought on by the absence of Sur1, thereby allowing euglycemia to be maintained.


Diabetes | 2010

MafA and MafB regulate genes critical to beta-cells in a unique temporal manner.

Isabella Artner; Yan Hang; Magdalena Mazur; Tsunehiko Yamamoto; Min Guo; Jill Lindner; Mark A. Magnuson; Roland Stein

OBJECTIVE Several transcription factors are essential to pancreatic islet β-cell development, proliferation, and activity, including MafA and MafB. However, MafA and MafB are distinct from others in regard to temporal and islet cell expression pattern, with β-cells affected by MafB only during development and exclusively by MafA in the adult. Our aim was to define the functional relationship between these closely related activators to the β-cell. RESEARCH DESIGN AND METHODS The distribution of MafA and MafB in the β-cell population was determined immunohistochemically at various developmental and perinatal stages in mice. To identify genes regulated by MafB, microarray profiling was performed on wild-type and MafB−/− pancreata at embryonic day 18.5, with candidates evaluated by quantitative RT-PCR and in situ hybridization. The potential role of MafA in the expression of verified targets was next analyzed in adult islets of a pancreas-wide MafA mutant (termed MafAΔPanc). RESULTS MafB was produced in a larger fraction of β-cells than MafA during development and found to regulate potential effectors of glucose sensing, hormone processing, vesicle formation, and insulin secretion. Notably, expression from many of these genes was compromised in MafAΔPanc islets, suggesting that MafA is required to sustain expression in adults. CONCLUSIONS Our results provide insight into the sequential manner by which MafA and MafB regulate islet β-cell formation and maturation.


Diabetes | 2011

Rictor/mTORC2 Is Essential for Maintaining a Balance Between β-Cell Proliferation and Cell Size

Yanyun Gu; Jill Lindner; Anil Kumar; Weiping Yuan; Mark A. Magnuson

OBJECTIVE We examined the role of Rictor/mammalian target of rapamycin complex 2 (mTORC2), a key component of the phosphotidylinositol-3-kinase (PI3K)/mTORC2/AKT signaling pathway, in regulating both β-cell mass and function. RESEARCH DESIGN AND METHODS Mice with β-cell–specific deletions of Rictor or Pten were studied to determine the effects of deleting either or both genes on β-cell mass and glucose homeostasis. RESULTS Rictor null mice exhibited mild hyperglycemia and glucose intolerance caused by a reduction in β-cell mass, β-cell proliferation, pancreatic insulin content, and glucose-stimulated insulin secretion. Islets from these mice exhibited decreased AKT-S473 phosphorylation and increased abundance of FoxO1 and p27 proteins. Conversely, Pten null (βPtenKO) mice exhibited an increase in β-cell mass caused by increased cellular proliferation and size. Although β-cell mass was normal in mice lacking both Rictor and Pten (βDKO), their β-cells were larger than those in the βPtenKO mice. Even though the β-cell proliferation rate in the βDKO mice was lower than in the βPtenKO mice, there was a 12-fold increase the phosphorylation of AKT-T308. CONCLUSIONS PI3K/AKT signaling through mTORC2/pAKT-S473 plays a key role in maintaining normal β-cell mass. The phosphorylation of AKT-S473, by negatively regulating that of AKT-T308, is essential for maintaining a balance between β-cell proliferation and cell size in response to proliferative stimuli.


Journal of Clinical Investigation | 1984

A luteinizing hormone-releasing hormone agonist decreases biological activity and modifies chromatographic behavior of luteinizing hormone in man.

R M Evans; G C Doelle; Jill Lindner; V Bradley; David Rabin

The effect of the luteinizing hormone-releasing hormone (LHRH) agonist, [D-Trp6,Pro9-NEth]LHRH (LHRHA), on luteinizing hormone (LH) bioactivity was assessed with a rat interstitial cell assay in four men during a 14-d treatment period. Biologic/immunologic (B/I) ratios were unchanged initially with treatment but by day 12 had fallen to levels lower than basal values. Frequent sampling on day 12 revealed blunted gonadotropin responsiveness to LHRHA and absence of spontaneous LH pulsations. Despite continued administration of LHRHA, human chorionic gonadotropin administration resulted in elevated B/I ratios and testosterone levels. Further characterization of the serum immunoreactive LH by Sephadex chromatography revealed a later elution profile during treatment with LHRHA. Thus, LHRHA appears to act, in part, by modification of the bioactivity of LH in man.


Molecular and Cellular Biology | 2005

Energy Homeostasis and Gastrointestinal Endocrine Differentiation Do Not Require the Anorectic Hormone Peptide YY

Susan Schonhoff; Laurie L. Baggio; Christelle Ratineau; Subir K. Ray; Jill Lindner; Mark A. Magnuson; Daniel J. Drucker; Andrew B. Leiter

ABSTRACT The gastrointestinal hormone peptide YY is a potent inhibitor of food intake and is expressed early during differentiation of intestinal and pancreatic endocrine cells. In order to better understand the role of peptide YY in energy homeostasis and development, we created mice with a targeted deletion of the peptide YY gene. All intestinal and pancreatic endocrine cells developed normally in the absence of peptide YY with the exception of pancreatic polypeptide (PP) cells, indicating that peptide YY expression was not required for terminal differentiation. We used recombination-based cell lineage trace to determine if peptide YY cells were progenitors for gastrointestinal endocrine cells. Peptide YY+ cells gave rise to all L-type enteroendocrine cells and to islet ∂ and PP cells. In the pancreas, approximately 40% of pancreatic α and rare β cells arose from peptide YY+ cells, suggesting that most β cells and surprisingly the majority of α cells are not descendants of peptide YY+/glucagon-positive/insulin-positive cells that appear during early pancreagenesis. Despite the anorectic effects of exogenous peptide YY3-36 following intraperitoneal administration, mice lacking peptide YY showed normal growth, food intake, energy expenditure, and responsiveness to peptide YY3-36. These observations suggest that targeted disruption of the peptide YY gene does not perturb terminal endocrine cell differentiation or the control of food intake and energy homeostasis.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Mind bomb 1 is required for pancreatic β-cell formation

Signe Horn; Sune Kobberup; Mette C. Jørgensen; Mark Kalisz; Tino Klein; Ryoichiro Kageyama; Moritz Gegg; Heiko Lickert; Jill Lindner; Mark A. Magnuson; Young-Yun Kong; Palle Serup; Jonas Ahnfelt-Rønne; Jan Jensen

During early pancreatic development, Notch signaling represses differentiation of endocrine cells and promotes proliferation of Nkx6-1+Ptf1a+ multipotent progenitor cells (MPCs). Later, antagonistic interactions between Nkx6 transcription factors and Ptf1a function to segregate MPCs into distal Nkx6-1−Ptf1a+ acinar progenitors and proximal Nkx6-1+Ptf1a− duct and β-cell progenitors. Distal cells are initially multipotent, but evolve into unipotent, acinar cell progenitors. Conversely, proximal cells are bipotent and give rise to duct cells and late-born endocrine cells, including the insulin producing β-cells. However, signals that regulate proximodistal (P-D) patterning and thus formation of β-cell progenitors are unknown. Here we show that Mind bomb 1 (Mib1) is required for correct P-D patterning of the developing pancreas and β-cell formation. We found that endoderm-specific inactivation of Mib1 caused a loss of Nkx6-1+Ptf1a− and Hnf1β+ cells and a corresponding loss of Neurog3+ endocrine progenitors and β-cells. An accompanying increase in Nkx6-1−Ptf1a+ and amylase+ cells, occupying the proximal domain, suggests that proximal cells adopt a distal fate in the absence of Mib1 activity. Impeding Notch-mediated transcriptional activation by conditional expression of dominant negative Mastermind-like 1 (Maml1) resulted in a similarly distorted P-D patterning and suppressed β-cell formation, as did conditional inactivation of the Notch target gene Hes1. Our results reveal iterative use of Notch in pancreatic development to ensure correct P-D patterning and adequate β-cell formation.


The New England Journal of Medicine | 1979

Isolated follicle-stimulating hormone deficiency revisited. Ovulation and conception in presence of circulating antibody to follicle-stimulating hormone.

David Rabinowitz; Robert Benveniste; Jill Lindner; Daniel Lorber; James Daniell

WE have previously described the clinical features of a 22-year-old woman who was evaluated in 1971 for primary amenorrhea and in whom we established the diagnosis of isolated deficiency of follicl...


Journal of Biological Chemistry | 2007

Glucokinase Thermolability and Hepatic Regulatory Protein Binding Are Essential Factors for Predicting the Blood Glucose Phenotype of Missense Mutations

Maria Pino; Kyoung-Ah Kim; Kathy D. Shelton; Jill Lindner; Stella Odili; Changhong Li; Heather W. Collins; Masakazu Shiota; Franz M. Matschinsky; Mark A. Magnuson

To better understand how glucokinase (GK) missense mutations associated with human glycemic diseases perturb glucose homeostasis, we generated and characterized mice with either an activating (A456V) or inactivating (K414E) mutation in the gk gene. Animals with these mutations exhibited alterations in their blood glucose concentration that were inversely related to the relative activity index of GK. Moreover, the threshold for glucose-stimulated insulin secretion from islets with either the activating or inactivating mutation were left- or right-shifted, respectively. However, we were surprised to find that mice with the activating mutation had markedly reduced amounts of hepatic GK activity. Further studies of bacterially expressed mutant enzymes revealed that GKA456V is as stable as the wild type enzyme, whereas GKK414E is thermolabile. However, the ability of GK regulatory protein to inhibit GKA456V was found to be less than that of the wild type enzyme, a finding consistent with impaired hepatic nuclear localization. Taken together, this study indicates that it is necessary to have knowledge of both thermolability and the interactions of mutant GK enzymes with GK regulatory protein when attempting to predict in vivo glycemic phenotypes based on the measurement of enzyme kinetics.

Collaboration


Dive into the Jill Lindner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean Rivier

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wylie Vale

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Dean Sherry

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

B. Jane Rogers

Vanderbilt University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge