Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jill M. Angelosanto is active.

Publication


Featured researches published by Jill M. Angelosanto.


Nature Immunology | 2011

Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus

Laurel A. Monticelli; Gregory F. Sonnenberg; Michael C. Abt; Theresa Alenghat; Carly G.K. Ziegler; Travis A. Doering; Jill M. Angelosanto; Brian J. Laidlaw; Cliff Y Yang; Taheri Sathaliyawala; Masaru Kubota; Damian Turner; Joshua M. Diamond; Ananda W. Goldrath; Donna L. Farber; Ronald G. Collman; E. John Wherry; David Artis

Innate lymphoid cells (ILCs), a heterogeneous cell population, are critical in orchestrating immunity and inflammation in the intestine, but whether ILCs influence immune responses or tissue homeostasis at other mucosal sites remains poorly characterized. Here we identify a population of lung-resident ILCs in mice and humans that expressed the alloantigen Thy-1 (CD90), interleukin 2 (IL-2) receptor α-chain (CD25), IL-7 receptor α-chain (CD127) and the IL-33 receptor subunit T1-ST2. Notably, mouse ILCs accumulated in the lung after infection with influenza virus, and depletion of ILCs resulted in loss of airway epithelial integrity, diminished lung function and impaired airway remodeling. These defects were restored by administration of the lung ILC product amphiregulin. Collectively, our results demonstrate a critical role for lung ILCs in restoring airway epithelial integrity and tissue homeostasis after infection with influenza virus.


Nature | 2013

Innate lymphoid cells regulate CD4 + T-cell responses to intestinal commensal bacteria

Matthew R. Hepworth; Laurel A. Monticelli; Thomas C. Fung; Carly G.K. Ziegler; Stephanie Grunberg; Rohini Sinha; Adriana R. Mantegazza; Hak Ling Ma; Alison Crawford; Jill M. Angelosanto; E. John Wherry; Pandelakis A. Koni; Frederic D. Bushman; Charles O. Elson; Gérard Eberl; David Artis; Gregory F. Sonnenberg

Innate lymphoid cells (ILCs) are a recently characterized family of immune cells that have critical roles in cytokine-mediated regulation of intestinal epithelial cell barrier integrity. Alterations in ILC responses are associated with multiple chronic human diseases, including inflammatory bowel disease, implicating a role for ILCs in disease pathogenesis. Owing to an inability to target ILCs selectively, experimental studies assessing ILC function have predominantly used mice lacking adaptive immune cells. However, in lymphocyte-sufficient hosts ILCs are vastly outnumbered by CD4+ T cells, which express similar profiles of effector cytokines. Therefore, the function of ILCs in the presence of adaptive immunity and their potential to influence adaptive immune cell responses remain unknown. To test this, we used genetic or antibody-mediated depletion strategies to target murine ILCs in the presence of an adaptive immune system. We show that loss of retinoic-acid-receptor-related orphan receptor-γt-positive (RORγt+) ILCs was associated with dysregulated adaptive immune cell responses against commensal bacteria and low-grade systemic inflammation. Remarkably, ILC-mediated regulation of adaptive immune cells occurred independently of interleukin (IL)-17A, IL-22 or IL-23. Genome-wide transcriptional profiling and functional analyses revealed that RORγt+ ILCs express major histocompatibility complex class II (MHCII) and can process and present antigen. However, rather than inducing T-cell proliferation, ILCs acted to limit commensal bacteria-specific CD4+ T-cell responses. Consistent with this, selective deletion of MHCII in murine RORγt+ ILCs resulted in dysregulated commensal bacteria-dependent CD4+ T-cell responses that promoted spontaneous intestinal inflammation. These data identify that ILCs maintain intestinal homeostasis through MHCII-dependent interactions with CD4+ T cells that limit pathological adaptive immune cell responses to commensal bacteria.


Immunity | 2009

A Role for the Transcriptional Repressor Blimp-1 in CD8+ T Cell Exhaustion during Chronic Viral Infection

Haina Shin; Shawn D. Blackburn; Andrew M. Intlekofer; Charlly Kao; Jill M. Angelosanto; Steven L. Reiner; E. John Wherry

T cell exhaustion is common during chronic infections and can prevent optimal immunity. Although recent studies have demonstrated the importance of inhibitory receptors and other pathways in T cell exhaustion, the underlying transcriptional mechanisms are unknown. Here, we define a role for the transcription factor Blimp-1 in CD8(+) T cell exhaustion during chronic viral infection. Blimp-1 repressed key aspects of normal memory CD8(+) T cell differentiation and promoted high expression of inhibitory receptors during chronic infection. These cardinal features of CD8(+) T cell exhaustion were corrected by conditionally deleting Blimp-1. Although high expression of Blimp-1 fostered aspects of CD8(+) T cell exhaustion, haploinsufficiency indicated that moderate Blimp-1 expression sustained some effector function during chronic viral infection. Thus, we identify Blimp-1 as a transcriptional regulator of CD8(+) T cell exhaustion during chronic viral infection and propose that Blimp-1 acts as a transcriptional rheostat balancing effector function and T cell exhaustion.


Nature Immunology | 2011

Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8 + T cell responses during chronic infection

Charlly Kao; Kenneth J. Oestreich; Michael A. Paley; Alison Crawford; Jill M. Angelosanto; Mohammed Alkhatim A Ali; Andrew M. Intlekofer; Jeremy M. Boss; Steven L. Reiner; Amy S. Weinmann; E. John Wherry

T cell exhaustion has a major role in failure to control chronic infection. High expression of inhibitory receptors, including PD-1, and the inability to sustain functional T cell responses contribute to exhaustion. However, the transcriptional control of these processes remains unclear. Here we demonstrate that the transcription factor T-bet regulated the exhaustion of CD8+ T cells and the expression of inhibitory receptors. T-bet directly repressed transcription of the gene encoding PD-1 and resulted in lower expression of other inhibitory receptors. Although a greater abundance of T-bet promoted terminal differentiation after acute infection, high T-bet expression sustained exhausted CD8+ T cells and repressed the expression of inhibitory receptors during chronic viral infection. Persistent antigenic stimulation caused downregulation of T-bet, which resulted in more severe exhaustion of CD8+ T cells. Our observations suggest therapeutic opportunities involving higher T-bet expression during chronic infection.


Immunity | 2014

Molecular and Transcriptional Basis of CD4+ T Cell Dysfunction during Chronic Infection

Alison Crawford; Jill M. Angelosanto; Charlly Kao; Travis A. Doering; Pamela M. Odorizzi; Burton E. Barnett; E. John Wherry

T cell exhaustion is common during chronic infections. Although CD4(+) T cells are critical for controlling viral load during chronic viral infections, less is known about their differentiation and transcriptional program. We defined the phenotypic, functional, and molecular profiles of exhausted CD4(+) T cells. Global transcriptional analysis demonstrated a molecular profile distinct from effector and memory CD4(+) T cells and also from exhausted CD8(+) T cells, though some common features of CD4(+) and CD8(+) T cell exhaustion were revealed. We have demonstrated unappreciated roles for transcription factors (TFs) including Helios, type I interferon (IFN-I) signaling, and a diverse set of coinhibitory and costimulatory molecules during CD4(+) T cell exhaustion. Moreover, the signature of CD4(+) T cell exhaustion was found to be distinct from that of other CD4(+) T cell lineage subsets and was associated with TF heterogeneity. This study provides a framework for therapeutic interventions targeting exhausted CD4(+) T cells.


Journal of Virology | 2012

Progressive loss of memory T cell potential and commitment to exhaustion during chronic viral infection

Jill M. Angelosanto; Shawn D. Blackburn; Alison Crawford; E. J. Wherry

ABSTRACT T cell exhaustion and loss of memory potential occur during many chronic viral infections and cancer. We investigated when during chronic viral infection virus-specific CD8 T cells lose the potential to form memory. Virus-specific CD8 T cells from established chronic infection were unable to become memory CD8 T cells if removed from infection. However, at earlier stages of chronic infection, these virus-specific CD8 T cells retained the potential to partially or fully revert to a memory differentiation program after transfer to infection-free mice. Conversely, effector CD8 T cells primed during acute infection were not protected from exhaustion if transferred to a chronic infection. We also tested whether memory and exhausted CD8 T cells arose from different subpopulations of effector CD8 T cells and found that only the KLRG1lo memory precursor subset gave rise to exhausted CD8 T cells. Together, these studies demonstrate that CD8 T cell exhaustion is a progressive developmental process. Early during chronic infection, the fate of virus-specific CD8 T cells remains plastic, while later, exhausted CD8 T cells become fixed in their differentiation state. Moreover, exhausted CD8 T cells arise from the memory precursor and not the terminally differentiated subset of effector CD8 T cells. These studies have implications for our understanding of senescence versus exhaustion and for therapeutic interventions during chronic infection.


PLOS Pathogens | 2011

A Role for the Chemokine RANTES in Regulating CD8 T Cell Responses during Chronic Viral Infection

Alison Crawford; Jill M. Angelosanto; Kim Lynn Nadwodny; Shawn D. Blackburn; E. John Wherry

RANTES (CCL5) is a chemokine expressed by many hematopoietic and non-hematopoietic cell types that plays an important role in homing and migration of effector and memory T cells during acute infections. The RANTES receptor, CCR5, is a major target of anti-HIV drugs based on blocking viral entry. However, defects in RANTES or RANTES receptors including CCR5 can compromise immunity to acute infections in animal models and lead to more severe disease in humans infected with west Nile virus (WNV). In contrast, the role of the RANTES pathway in regulating T cell responses and immunity during chronic infection remains unclear. In this study, we demonstrate a crucial role for RANTES in the control of systemic chronic LCMV infection. In RANTES−/− mice, virus-specific CD8 T cells had poor cytokine production. These RANTES−/− CD8 T cells also expressed higher amounts of inhibitory receptors consistent with more severe exhaustion. Moreover, the cytotoxic ability of CD8 T cells from RANTES−/− mice was reduced. Consequently, viral load was higher in the absence of RANTES. The dysfunction of T cells in the absence of RANTES was as severe as CD8 T cell responses generated in the absence of CD4 T cell help. Our results demonstrate an important role for RANTES in sustaining CD8 T cell responses during a systemic chronic viral infection.


PLOS Pathogens | 2013

Cooperativity Between CD8+ T Cells, Non-Neutralizing Antibodies, and Alveolar Macrophages Is Important for Heterosubtypic Influenza Virus Immunity

Brian J. Laidlaw; Vilma Decman; Mohammed-Alkhatim Ali; Michael C. Abt; Amaya I. Wolf; Laurel A. Monticelli; Krystyna Mozdzanowska; Jill M. Angelosanto; David Artis; Jan Erikson; E. John Wherry

Seasonal epidemics of influenza virus result in ∼36,000 deaths annually in the United States. Current vaccines against influenza virus elicit an antibody response specific for the envelope glycoproteins. However, high mutation rates result in the emergence of new viral serotypes, which elude neutralization by preexisting antibodies. T lymphocytes have been reported to be capable of mediating heterosubtypic protection through recognition of internal, more conserved, influenza virus proteins. Here, we demonstrate using a recombinant influenza virus expressing the LCMV GP33-41 epitope that influenza virus-specific CD8+ T cells and virus-specific non-neutralizing antibodies each are relatively ineffective at conferring heterosubtypic protective immunity alone. However, when combined virus-specific CD8 T cells and non-neutralizing antibodies cooperatively elicit robust protective immunity. This synergistic improvement in protective immunity is dependent, at least in part, on alveolar macrophages and/or other lung phagocytes. Overall, our studies suggest that an influenza vaccine capable of eliciting both CD8+ T cells and antibodies specific for highly conserved influenza proteins may be able to provide heterosubtypic protection in humans, and act as the basis for a potential “universal” vaccine.


Nature Immunology | 2011

Innate lymphoid cells promote lung tissue homeostasis following acute influenza virus infection

Laurel A. Monticelli; Gregory F. Sonnenberg; Michael C. Abt; Theresa Alenghat; Carly G.K. Ziegler; Travis A. Doering; Jill M. Angelosanto; Brian J. Laidlaw; Cliff Y Yang; Taheri Sathaliyawala; Masaru Kubota; Damian Turner; Joshua M. Diamond; Ananda W. Goldrath; Donna L. Farber; Ronald G. Collman; E. John Wherry; David Artis

Innate lymphoid cells (ILCs), a recently identified heterogeneous cell population, are critical in orchestrating immunity and inflammation in the intestine but whether ILCs can influence immune responses or tissue homeostasis at other mucosal sites remains poorly characterized. Here we identify a population of lung-resident ILCs in mice and humans that expressed CD90, CD25, CD127 and T1-ST2. Strikingly, mouse ILCs accumulated in the lung following influenza virus infection and depletion of ILCs resulted in loss of airway epithelial integrity, decreased lung function and impaired airway remodeling. These defects could be restored by administration of the lung ILC product amphiregulin. Collectively, these results demonstrate a critical role for lung ILCs in restoring airway epithelial integrity and tissue homeostasis following influenza virus infection.


Journal of Immunology | 2008

Identification of an Evolutionarily Conserved Transcriptional Signature of CD8 Memory Differentiation That Is Shared by T and B Cells

W. Nicholas Haining; Benjamin L. Ebert; Aravind Subrmanian; E. John Wherry; Quentin Eichbaum; John W. Evans; Raymond H. Mak; Stephen Rivoli; Jennifer L. Pretz; Jill M. Angelosanto; John S. Smutko; Bruce D. Walker; Susan M. Kaech; Rafi Ahmed; Lee M. Nadler; Todd R. Golub

After Ag encounter, naive lymphocytes differentiate into populations of memory cells that share a common set of functions including faster response to Ag re-exposure and the ability to self-renew. However, memory lymphocytes in different lymphocyte lineages are functionally and phenotypically diverse. It is not known whether discrete populations of T and B cells use similar transcriptional programs during differentiation into the memory state. We used cross-species genomic analysis to examine the pattern of genes up-regulated during the differentiation of naive lymphocytes into memory cells in multiple populations of human CD4, CD8, and B cell lymphocytes as well as two mouse models of memory development. We identified and validated a signature of genes that was up-regulated in memory cells compared with naive cells in both human and mouse CD8 memory differentiation, suggesting marked evolutionary conservation of this transcriptional program. Surprisingly, this conserved CD8 differentiation signature was also up-regulated during memory differentiation in CD4 and B cell lineages. To validate the biologic significance of this signature, we showed that alterations in this signature of genes could distinguish between functional and exhausted CD8 T cells from a mouse model of chronic viral infection. Finally, we generated genome-wide microarray data from tetramer-sorted human T cells and showed profound differences in this differentiation signature between T cells specific for HIV and those specific for influenza. Thus, our data suggest that in addition to lineage-specific differentiation programs, T and B lymphocytes use a common transcriptional program during memory development that is disrupted in chronic viral infection.

Collaboration


Dive into the Jill M. Angelosanto's collaboration.

Top Co-Authors

Avatar

E. John Wherry

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Alison Crawford

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carly G.K. Ziegler

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Travis A. Doering

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge