Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jillian F Wise is active.

Publication


Featured researches published by Jillian F Wise.


Leukemia | 2014

FAS-antisense 1 lncRNA and production of soluble versus membrane Fas in B-cell lymphoma

Lalit Sehgal; Rohit Mathur; Frank K Braun; Jillian F Wise; Zuzana Berkova; Sattva S. Neelapu; Larry W. Kwak; F. Samaniego

Impaired Fas-mediated apoptosis is associated with poor clinical outcomes and cancer chemoresistance. Soluble Fas receptor (sFas), produced by skipping of exon 6, inhibits apoptosis by sequestering Fas ligand. Serum sFas is associated with poor prognosis of non-Hodgkin’s lymphomas. We found that the alternative splicing of Fas in lymphomas is tightly regulated by a long-noncoding RNA corresponding to an antisense transcript of Fas (FAS-AS1). Levels of FAS-AS1 correlate inversely with production of sFas, and FAS-AS1 binding to the RBM5 inhibits RBM5-mediated exon 6 skipping. EZH2, often mutated or overexpressed in lymphomas, hyper-methylates the FAS-AS1 promoter and represses the FAS-AS1 expression. EZH2-mediated repression of FAS-AS1 promoter can be released by DZNeP (3-Deazaneplanocin A) or overcome by ectopic expression of FAS-AS1, both of which increase levels of FAS-AS1 and correspondingly decrease expression of sFas. Treatment with Bruton’s tyrosine kinase inhibitor or EZH2 knockdown decreases the levels of EZH2, RBM5 and sFas, thereby enhancing Fas-mediated apoptosis. This is the first report showing functional regulation of Fas repression by its antisense RNA. Our results reveal new therapeutic targets in lymphomas and provide a rationale for the use of EZH2 inhibitors or ibrutinib in combination with chemotherapeutic agents that recruit Fas for effective cell killing.


Blood | 2013

Nucleolin inhibits Fas ligand binding and suppresses Fas-mediated apoptosis in vivo via a surface nucleolin-Fas complex

Jillian F Wise; Zuzana Berkova; Rohit Mathur; Haifeng Zhu; Frank K Braun; Rong Hua Tao; Anita L. Sabichi; Xue Ao; Hoyoung Maeng; Felipe Samaniego

Resistance to Fas-mediated apoptosis is associated with poor cancer outcomes and chemoresistance. To elucidate potential mechanisms of defective Fas signaling, we screened primary lymphoma cell extracts for Fas-associated proteins that would have the potential to regulate Fas signaling. An activation-resistant Fas complex selectively included nucleolin. We confirmed the presence of nucleolin-Fas complexes in B-cell lymphoma cells and primary tissues, and the absence of such complexes in B-lymphocytes from healthy donors. RNA-binding domain 4 and the glycine/arginine-rich domain of nucleolin were essential for its association with Fas. Nucleolin colocalized with Fas on the surface of B-cell lymphoma cells. Nucleolin knockdown sensitized BJAB cells to Fas ligand (FasL)-induced and Fas agonistic antibody-induced apoptosis through enhanced binding, suggesting that nucleolin blocks the FasL-Fas interaction. Mice transfected with nucleolin were protected from the lethal effects of agonistic anti-mouse Fas antibody (Jo2) and had lower rates of hepatocyte apoptosis, compared with vector and a non-Fas-binding mutant of nucleolin. Our results show that cell surface nucleolin binds Fas, inhibits ligand binding, and thus prevents induction of Fas-mediated apoptosis in B-cell lymphomas and may serve as a new therapeutic target.


Journal of the National Cancer Institute | 2009

Mechanism of Fas Signaling Regulation by Human Herpesvirus 8 K1 Oncoprotein

Zuzana Berkova; Shu Wang; Jillian F Wise; Hoyoung Maeng; Yuan Ji; Felipe Samaniego

BACKGROUND Herpesvirus 8 (HHV-8) oncoprotein K1 is linked to lymphoproliferation and suppression of apoptosis mediated by the Fas death receptor. Expression of K1 in transgenic mice induces accumulation of lymphoid tissue cells and lymphoma. METHODS To examine how K1 and Fas interact to suppress apoptosis, K1-Fas binding was studied in human embryonic kidney (HEK) and lymphoma (BJAB) cells that expressed wild-type K1 or a K1 Ig domain deletion mutant and were treated with Fas ligand (FasL) or an agonistic Fas antibody, using immunoprecipitation and Western blot analysis. Cleavage of caspase-3 and apoptosis was compared in liver samples from mice that were transfected with empty vector vs with plasmids expressing wild-type K1 or a K1 Ig deletion mutant and treated with agonistic Fas antibody for 7 hours. These studies used immunohistochemical staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. All statistical tests were two-sided. RESULTS Immunoprecipitation and Western blot analysis of transfected HEK and BJAB cells revealed that wild-type K1 but not Ig-deleted K1 binds to Fas and prevents Fas activation by FasL or by an agonistic Fas antibody. More mice that were transfected with wild-type K1 (7 of 10) than mice transfected with empty vector (3 of 13) or the K1 Ig deletion mutant (0 of 6) survived treatment with the agonistic Fas antibody. Compared with vector-transfected mice, livers of wild-type K1-transfected mice contained fewer cells in which caspase-3 was cleaved (87.6% vs 58.0%, difference = 29.6%, 95% confidence interval [CI] = 19.2% to 40.0%; P = .003) and fewer apoptotic cells (83.7% vs 34.2%, difference = 49.5%, 95% CI = 39.8% to 59.2%; P = .003). CONCLUSIONS K1 blocks Fas signaling by directly binding to Fas through the Ig-like domain of K1 and preventing binding of FasL. The relative resistance of cancer cells to Fas-mediated apoptosis may be due to the inhibition of Fas by Ig domain-containing proteins.


Journal of Experimental & Clinical Cancer Research | 2014

CD74 interferes with the expression of fas receptor on the surface of lymphoma cells

Zuzana Berkova; Shu Wang; Xue Ao; Jillian F Wise; Frank K Braun; Abdol Hossein Rezaeian; Lalit Sehgal; David M. Goldenberg; Felipe Samaniego

BackgroundResistance to Fas-mediated apoptosis limits the efficacy of currently available chemotherapy regimens. We identified CD74, which is known to be overexpressed in hematological malignancies, as one of the factors interfering with Fas-mediated apoptosis.MethodsCD74 expression was suppressed in human B-lymphoma cell lines, BJAB and Raji, by either transduction with lentivirus particles or transfection with episomal vector, both encoding CD74-specific shRNAs or non-target shRNA. Effect of CD74 expression on Fas signaling was evaluated by comparing survival of mice hydrodynamically transfected with vector encoding full-length CD74 or empty vector. Sensitivity of cells with suppressed CD74 expression to FasL, edelfosine, doxorubicin, and a humanized CD74-specific antibody, milatuzumab, was evaluated by flow cytometry and compared to control cells. Fas signaling in response to FasL stimulation and the expression of Fas signaling components were evaluated by Western blot. Surface expression of Fas was detected by flow cytometry.ResultsWe determined that cells with suppressed CD74 are more sensitive to FasL-induced apoptosis and Fas signaling-dependent chemotherapies, edelfosine and doxorubicin, than control CD74-expressing cells. On the other hand, expression of full-length CD74 in livers protected the mice from a lethal challenge with agonistic anti-Fas antibody Jo2. A detailed analysis of Fas signaling in cells lacking CD74 and control cells revealed increased cleavage/activation of pro-caspase-8 and corresponding enhancement of caspase-3 activation in the absence of CD74, suggesting that CD74 affects the immediate early steps in Fas signaling at the plasma membrane. Cells with suppressed CD74 expression showed increased staining of Fas receptor on their surface. Pre-treatment with milatuzumab sensitized BJAB cells to Fas-mediated apoptosis.ConclusionWe anticipate that specific targeting of the CD74 on the cell surface will sensitize CD74-expressing cancer cells to Fas-mediated apoptosis, and thus will increase effectiveness of chemotherapy regimens for hematological malignancies.


Blood | 2011

PMLRARα binds to Fas and suppresses Fas-mediated apoptosis through recruiting c-FLIP in vivo.

Rong Hua Tao; Zuzana Berkova; Jillian F Wise; Abdol Hossein Rezaeian; Urszula Daniluk; Xue Ao; David H. Hawke; Judith E. Karp; Hui Kuan Lin; Jeffrey J. Molldrem; Felipe Samaniego

Defective Fas signaling leads to resistance to various anticancer therapies. Presence of potential inhibitors of Fas which could block Fas signaling can explain cancer cells resistance to apoptosis. We identified promyelocytic leukemia protein (PML) as a Fas-interacting protein using mass spectrometry analysis. The function of PML is blocked by its dominant-negative form PML-retinoic acid receptor α (PMLRARα). We found PMLRARα interaction with Fas in acute promyelocytic leukemia (APL)-derived cells and APL primary cells, and PML-Fas complexes in normal tissues. Binding of PMLRARα to Fas was mapped to the B-box domain of PML moiety and death domain of Fas. PMLRARα blockage of Fas apoptosis was demonstrated in U937/PR9 cells, human APL cells and transgenic mouse APL cells, in which PMLRARα recruited c-FLIP(L/S) and excluded procaspase 8 from Fas death signaling complex. PMLRARα expression in mice protected the mice against a lethal dose of agonistic anti-Fas antibody (P < .001) and the protected tissues contained Fas-PMLRARα-cFLIP complexes. Taken together, PMLRARα binds to Fas and blocks Fas-mediated apoptosis in APL by forming an apoptotic inhibitory complex with c-FLIP. The presence of PML-Fas complexes across different tissues implicates that PML functions in apoptosis regulation and tumor suppression are mediated by direct interaction with Fas.


Leukemia | 2018

Targeting nucleolin for better survival in diffuse large B-cell lymphoma

Nitin Jain; Haifeng Zhu; T. Khashab; Q. Ye; B. George; Rohit Mathur; R. K. Singh; Zuzana Berkova; Jillian F Wise; Frank K Braun; X. Wang; Keyur P. Patel; Z. Y. Xu-Monette; J. Courty; Ken H. Young; Lalit Sehgal; F. Samaniego

Anthracyclines have been a cornerstone in the cure of diffuse large B-cell lymphoma (DLBCL) and other hematological cancers. The ability of anthracyclines to eliminate DLBCL depends on the presence of topoisomerase-II-alpha (TopIIA), a DNA repair enzyme complex. We identified nucleolin as a novel binding partner of TopIIA. Abrogation of nucleolin sensitized DLBCL cells to TopIIA targeting agents (doxorubicin/etoposide). Silencing nucleolin and challenging DLBCL cells with doxorubicin enhanced the phosphorylation of H2AX (γH2AX-marker of DNA damage) and allowed DNA fragmentation. Reconstitution of nucleolin expression in nucleolin-knockdown DLBCL cells prevented TopIIA targeting agent-induced apoptosis. Nucleolin binding to TopIIA was mapped to RNA-binding domain 3 of nucleolin, and this interaction was essential for blocking DNA damage and apoptosis. Nucleolin silencing decreased TopIIA decatenation activity, but enhanced formation of TopIIA–DNA cleavable complexes in the presence of etoposide. Moreover, combining nucleolin inhibitors: aptamer AS1411 or nucant N6L with doxorubicin reduced DLBCL cell survival. These findings are of clinical importance because low nucleolin levels versus high nucleolin levels in DLBCL predicted 90-month estimated survival of 70% versus 12% (P<0.0001) of patients treated with R-CHOP-based therapy.


Journal of Experimental & Clinical Cancer Research | 2012

The peptide derived from the Ig-like domain of human herpesvirus 8 K1 protein induces death in hematological cancer cells

Urszula Daniluk; Celine Kerros; Rong Hua Tao; Jillian F Wise; Xue Ao; Zuzana Berkova; Felipe Samaniego

BackgroundAlthough significant progress has been made in the treatment of lymphomas, many lymphomas exhibit resistance to cell death, suggesting a defective Fas signaling, which remains poorly understood. We previously reported that cells expressing the K1 protein of human herpesvirus 8 (HHV-8) resist death through the complex formation of the Ig-like domain of K1 with Fas. Recently, we investigated whether peptides derived from the Ig-like domain of the K1 protein may affect cell death.MethodsK1 positive and negative cell lines were incubated with the K1-derived peptides, and cell death (apoptotic and necrotic) was assessed by flow cytometry and LDH assay. Activation of caspases was assessed by fluorometric assay and flow cytometry. Fas receptor-independent, peptide-mediated cell killing was tested in the Fas-resistant Daudi cell line and Jurkat cell clones deficient in caspase-8 and FADD functionality. Activation of TNF receptors I and II was blocked by pre-incubation with corresponding blocking antibodies. The effect of the K1 peptide in vivo was tested in a mouse xenograft model.ResultsWe observed that the peptide S20-3 enhanced cell death in K1-positive BJAB cells and HHV-8 positive primary effusion lymphoma (PEL) cell lines. Similar effects of this peptide were observed in B-cell lymphoma and T-lymphoblastic leukemia cells without K1 expression but not in normal human peripheral blood mononuclear cells. A single intratumoral injection of the S20-3 peptide decreased the growth of Jurkat xenografts in SCID mice. The mechanism of tumor cell death induced by the S20-3 peptide was associated with activation of caspases, but this activity was only partially inhibited by the pan-caspase inhibitor z-VAD. Furthermore, the K1 peptide also killed Fas-resistant Daudi cells, and this killing effect was inhibited by pre-incubation of cells with antibodies blocking TNFRI.ConclusionTaken together, these findings indicate that the S20-3 peptide can selectively induce the death of malignant hematological cell lines by Fas- and/or TNFRI-dependent mechanisms, suggesting the K1-derived peptide or peptidomimetic may have promising therapeutic potential for the treatment of hematological cancers.


Cancer Research | 2012

Abstract 4965: Oncoprotein PMLRAR{alpha} directly suppresses Fas-mediated apoptosis through forming an apoptotic inhibitory complex with c-FLIP in vivo

Rong-Hua Tao; Zuzana Berkova; Jillian F Wise; Celine Kerros; Xue Ao; Yong Seok Lee; Haifeng Zhu; Felipe Samaniego

Objective: Many genotoxic therapies, including radiation, depend on intact Fas signaling to eradicate cancer cells. Defective Fas signaling is an important cause of cancer resistance to therapy. Restoring Fas apoptosis or sensitizing cancer cells to Fas-mediated apoptosis would improve the efficacy of many cancer therapies. To elucidate a role for specific regulators of Fas signaling in cancer cells, we sought to identify potential modulators of Fas expressed in cancers and target them to selectively sensitize cancer cells to Fas-mediated apoptosis as a component of chemotherapy. Methods: Liquid chromatography tandem mass spectrometry was used to identify Fas-associated proteins; co-immunoprecipitation and Western blot were used to detect interactions of PMLRARα, PML, c-FLIP and Fas, and to examine the components of death-inducing signaling complex (DISC) and caspase-8 cleavage. Deletional mutagenesis was used to map the interaction domains. PML shRNA lentivirus and As2O3 were used to knock down PML and PMLRARα. Flow cytometry analysis of propidium iodide- and Annexin-V-stained cells was used to detect apoptosis. Mice were transfected with PMLRARα, monitored for survival, and tissues were analyzed for apoptosis by staining for cleaved caspase-3 and TUNEL. Results: We identified promyelocytic leukemia protein (PML) as a Fas-interacting protein using mass spectrometry analysis. The function of PML is blocked by its dominant-negative form PMLRARα. We found PMLRARα interaction with Fas in acute promyelocytic leukemia (APL)-derived cells and APL primary cells, and PML-Fas complexes in normal tissues. Binding of PMLRARα to Fas was mapped to the B-box domain of PML moiety and death domain of Fas. PMLRARα blockage of Fas apoptosis was demonstrated in U937/PR9 cells, human APL cells and transgenic mouse APL cells, in which PMLRARα recruited c-FLIP L/S and excluded procaspase-8 from Fas death signaling complex. PMLRARα expression in mice protected the mice against a lethal dose of agonistic anti-Fas antibody (P Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 4965. doi:1538-7445.AM2012-4965


Cancer Research | 2010

Abstract 1254: Kaposi's Sarcoma herpesvirus K1's transcellular inhibition of Fas-mediated apoptosis

Urszula Daniluk; Zuzana Berkova; Jillian F Wise; Rong-Hua Tao; Rezaeian Hossein; Shu Wang; Om Prakash; Felipe Samaniego

The long-term expression of human herpesvirus 8 (HHV-8) K1 produces hyperplasia of lymph nodes, splenomegaly, and lymphomas in mice. The mechanism of how K1 causes hyperplasia and lymphomas is not known. K1 is known to activate Akt and nuclear factor kappa B (NF-kB) through immunoreceptor tyrosine-based activation motif (ITAM) and may also bind to Fas receptor through its immunoglobulin (Ig) chain-like domain and interfere with apoptosis. We thus hypothesized that development of hyperplasia and lymphomas in K1-expressing mice is driven by altered Fas signaling. Examination of mice expressing K1 via a ubiquitous promoter showed that 90% K1 transgenic mice (n=10) had developed lymphoid hyperplasia (at least 3 lymph nodes >3 mm) and 60% developed lymphomas after 18 months, while all (26) control nontransgenic mice remained free of lymph node hyperplasia, splenomegaly, and lymphoma. Some K1 mice developed liver or mesenteric tumors (4 of 10 mice). The spleens of 78% of K1 mice were enlarged at 18 months and were on average 3.5 times heavier than spleens of non-K1 transgenic control mice. Hematoxylin and eosin staining of spleen sections showed lymphocyte expansion in the periarteriolar lymphocyte sheath with disruption of normal spleen architecture. Anti-kappa and anti-lambda light chain antibodies revealed the presence of monoclonal foci in 3 out of 3 K1 mice (average 6 foci per single section of spleen), but no foci were present in 4 control non-transgenic mice. Moreover, K1 protein was expressed in approximately 10% of splenic cells after staining with anti-K1 antibody 2H5. In vitro overexpression of an Ig domain-containing protein CD79b or treatment cells with K1 peptides revealed competition with K1-Fas binding in a dose-dependent manner and rate enhancement of Fas-mediated apoptosis. We have also shown that K1 suppressed Fas-mediated apoptosis, even in cells that did not express K1. Transfection of K1 into one pool of mouse cells protected against Fas-mediated apoptosis of a second pool of human Fas-transfected mouse cells indicating protection in trans. This analysis indicates a key role of K1 in suppression of Fas-mediated apoptosis which operates in a cis and trans protective role against apoptosis. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; 2010 Apr 17-21; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2010;70(8 Suppl):Abstract nr 1254.


Infectious Agents and Cancer | 2009

Kaposi's sarcoma human herpesvirus K1 interferes with FAS-mediated apoptosis and stimulates clonal growth and lymphoid hyperplasia.

Felipe Samaniego; Zuzana Berkova; Hoyoung Maeng; Suizhao Wang; Jillian F Wise

Background Infection with human herpesvirus 8 (HHV-8), also known as Kaposi sarcoma associated herpesvirus, is associated with the development of primary effusion lymphoma and Kaposi sarcoma. A transmembrane protein of HHV-8, K1, is readily expressed in these tumors, and the expression of K1 alone causes hyperplasia of lymph nodes and lymphomas in mice. The exact mechanism of how K1 causes hyperplasia and lymphomas in K1-expressing mice is not known. The cytoplasmic immunoreceptor tyrosine-based activation motif (ITAM) of K1 was previously shown to be involved in activation of nuclear factor-kappa B (NF-κB). Moreover, we have recently shown that K1 suppresses Fasmediated apoptosis through its extracellular immunoglobulin-like domain and that K1-transfected mice survive a lethal dose of agonistic anti-Fas antibody (Jo2). We thus hypothesized that development of hyperplasia and lymphomas in K1-expressing mice is driven by alterations in Fas signaling.

Collaboration


Dive into the Jillian F Wise's collaboration.

Top Co-Authors

Avatar

Zuzana Berkova

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Felipe Samaniego

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Rong-Hua Tao

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Xue Ao

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Urszula Daniluk

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Frank K Braun

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Hoyoung Maeng

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Shu Wang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

David H. Hawke

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Haifeng Zhu

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge