Xue Ao
University of Texas MD Anderson Cancer Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xue Ao.
Blood | 2013
Jillian F Wise; Zuzana Berkova; Rohit Mathur; Haifeng Zhu; Frank K Braun; Rong Hua Tao; Anita L. Sabichi; Xue Ao; Hoyoung Maeng; Felipe Samaniego
Resistance to Fas-mediated apoptosis is associated with poor cancer outcomes and chemoresistance. To elucidate potential mechanisms of defective Fas signaling, we screened primary lymphoma cell extracts for Fas-associated proteins that would have the potential to regulate Fas signaling. An activation-resistant Fas complex selectively included nucleolin. We confirmed the presence of nucleolin-Fas complexes in B-cell lymphoma cells and primary tissues, and the absence of such complexes in B-lymphocytes from healthy donors. RNA-binding domain 4 and the glycine/arginine-rich domain of nucleolin were essential for its association with Fas. Nucleolin colocalized with Fas on the surface of B-cell lymphoma cells. Nucleolin knockdown sensitized BJAB cells to Fas ligand (FasL)-induced and Fas agonistic antibody-induced apoptosis through enhanced binding, suggesting that nucleolin blocks the FasL-Fas interaction. Mice transfected with nucleolin were protected from the lethal effects of agonistic anti-mouse Fas antibody (Jo2) and had lower rates of hepatocyte apoptosis, compared with vector and a non-Fas-binding mutant of nucleolin. Our results show that cell surface nucleolin binds Fas, inhibits ligand binding, and thus prevents induction of Fas-mediated apoptosis in B-cell lymphomas and may serve as a new therapeutic target.
Journal of Experimental & Clinical Cancer Research | 2014
Zuzana Berkova; Shu Wang; Xue Ao; Jillian F Wise; Frank K Braun; Abdol Hossein Rezaeian; Lalit Sehgal; David M. Goldenberg; Felipe Samaniego
BackgroundResistance to Fas-mediated apoptosis limits the efficacy of currently available chemotherapy regimens. We identified CD74, which is known to be overexpressed in hematological malignancies, as one of the factors interfering with Fas-mediated apoptosis.MethodsCD74 expression was suppressed in human B-lymphoma cell lines, BJAB and Raji, by either transduction with lentivirus particles or transfection with episomal vector, both encoding CD74-specific shRNAs or non-target shRNA. Effect of CD74 expression on Fas signaling was evaluated by comparing survival of mice hydrodynamically transfected with vector encoding full-length CD74 or empty vector. Sensitivity of cells with suppressed CD74 expression to FasL, edelfosine, doxorubicin, and a humanized CD74-specific antibody, milatuzumab, was evaluated by flow cytometry and compared to control cells. Fas signaling in response to FasL stimulation and the expression of Fas signaling components were evaluated by Western blot. Surface expression of Fas was detected by flow cytometry.ResultsWe determined that cells with suppressed CD74 are more sensitive to FasL-induced apoptosis and Fas signaling-dependent chemotherapies, edelfosine and doxorubicin, than control CD74-expressing cells. On the other hand, expression of full-length CD74 in livers protected the mice from a lethal challenge with agonistic anti-Fas antibody Jo2. A detailed analysis of Fas signaling in cells lacking CD74 and control cells revealed increased cleavage/activation of pro-caspase-8 and corresponding enhancement of caspase-3 activation in the absence of CD74, suggesting that CD74 affects the immediate early steps in Fas signaling at the plasma membrane. Cells with suppressed CD74 expression showed increased staining of Fas receptor on their surface. Pre-treatment with milatuzumab sensitized BJAB cells to Fas-mediated apoptosis.ConclusionWe anticipate that specific targeting of the CD74 on the cell surface will sensitize CD74-expressing cancer cells to Fas-mediated apoptosis, and thus will increase effectiveness of chemotherapy regimens for hematological malignancies.
Blood | 2011
Rong Hua Tao; Zuzana Berkova; Jillian F Wise; Abdol Hossein Rezaeian; Urszula Daniluk; Xue Ao; David H. Hawke; Judith E. Karp; Hui Kuan Lin; Jeffrey J. Molldrem; Felipe Samaniego
Defective Fas signaling leads to resistance to various anticancer therapies. Presence of potential inhibitors of Fas which could block Fas signaling can explain cancer cells resistance to apoptosis. We identified promyelocytic leukemia protein (PML) as a Fas-interacting protein using mass spectrometry analysis. The function of PML is blocked by its dominant-negative form PML-retinoic acid receptor α (PMLRARα). We found PMLRARα interaction with Fas in acute promyelocytic leukemia (APL)-derived cells and APL primary cells, and PML-Fas complexes in normal tissues. Binding of PMLRARα to Fas was mapped to the B-box domain of PML moiety and death domain of Fas. PMLRARα blockage of Fas apoptosis was demonstrated in U937/PR9 cells, human APL cells and transgenic mouse APL cells, in which PMLRARα recruited c-FLIP(L/S) and excluded procaspase 8 from Fas death signaling complex. PMLRARα expression in mice protected the mice against a lethal dose of agonistic anti-Fas antibody (P < .001) and the protected tissues contained Fas-PMLRARα-cFLIP complexes. Taken together, PMLRARα binds to Fas and blocks Fas-mediated apoptosis in APL by forming an apoptotic inhibitory complex with c-FLIP. The presence of PML-Fas complexes across different tissues implicates that PML functions in apoptosis regulation and tumor suppression are mediated by direct interaction with Fas.
Molecular Cancer Research | 2015
Haifeng Zhu; Zuzana Berkova; Rohit Mathur; Lalit Sehgal; Tamer Khashab; Rong Hua Tao; Xue Ao; Lei Feng; Anita L. Sabichi; Boris Blechacz; Asif Rashid; Felipe Samaniego
Hepatocellular carcinomas (HCC) show resistance to chemotherapy and have blunt response to apoptotic stimuli. HCC cell lines express low levels of the Fas death receptor and are resistant to FasL stimulation, whereas immortalized hepatocytes are sensitive. The variable Fas transcript levels and consistently low Fas protein in HCC cells suggest posttranscriptional regulation of Fas expression. The 3′-untranslated region (UTR) of Fas mRNA was found to interact with the ribonucleoprotein Human Antigen R (HuR) to block mRNA translation. Silencing of HuR in HCC cells increased the levels of cell surface Fas and sensitized HCC cells to FasL. Two AU-rich domains within the 3′-UTR of Fas mRNA were identified as putative HuR-binding sites and were found to mediate the translational regulation in reporter assay. Hydrodynamic transfection of HuR plasmid into mice induced downregulation of Fas expression in livers and established functional resistance to the killing effects of Fas agonist. Human HCC tumor tissues showed significantly higher overall and cytoplasmic HuR staining compared with normal liver tissues, and the high HuR staining score correlated with worse survival of patients with early-stage HCC. Combined, the protumorigenic ribonucleoprotein HuR blocks the translation of Fas mRNA and effectively prevents Fas-mediated apoptosis in HCC, suggesting that targeting HuR would sensitize cells to apoptotic stimuli and reverse tumorigenic properties. Implications: Demonstrating how death receptor signaling pathways are altered during progression of HCC will enable the development of better methods to restore this potent apoptosis mechanism. Mol Cancer Res; 13(5); 809–18. ©2015 AACR.
Journal of Experimental & Clinical Cancer Research | 2012
Urszula Daniluk; Celine Kerros; Rong Hua Tao; Jillian F Wise; Xue Ao; Zuzana Berkova; Felipe Samaniego
BackgroundAlthough significant progress has been made in the treatment of lymphomas, many lymphomas exhibit resistance to cell death, suggesting a defective Fas signaling, which remains poorly understood. We previously reported that cells expressing the K1 protein of human herpesvirus 8 (HHV-8) resist death through the complex formation of the Ig-like domain of K1 with Fas. Recently, we investigated whether peptides derived from the Ig-like domain of the K1 protein may affect cell death.MethodsK1 positive and negative cell lines were incubated with the K1-derived peptides, and cell death (apoptotic and necrotic) was assessed by flow cytometry and LDH assay. Activation of caspases was assessed by fluorometric assay and flow cytometry. Fas receptor-independent, peptide-mediated cell killing was tested in the Fas-resistant Daudi cell line and Jurkat cell clones deficient in caspase-8 and FADD functionality. Activation of TNF receptors I and II was blocked by pre-incubation with corresponding blocking antibodies. The effect of the K1 peptide in vivo was tested in a mouse xenograft model.ResultsWe observed that the peptide S20-3 enhanced cell death in K1-positive BJAB cells and HHV-8 positive primary effusion lymphoma (PEL) cell lines. Similar effects of this peptide were observed in B-cell lymphoma and T-lymphoblastic leukemia cells without K1 expression but not in normal human peripheral blood mononuclear cells. A single intratumoral injection of the S20-3 peptide decreased the growth of Jurkat xenografts in SCID mice. The mechanism of tumor cell death induced by the S20-3 peptide was associated with activation of caspases, but this activity was only partially inhibited by the pan-caspase inhibitor z-VAD. Furthermore, the K1 peptide also killed Fas-resistant Daudi cells, and this killing effect was inhibited by pre-incubation of cells with antibodies blocking TNFRI.ConclusionTaken together, these findings indicate that the S20-3 peptide can selectively induce the death of malignant hematological cell lines by Fas- and/or TNFRI-dependent mechanisms, suggesting the K1-derived peptide or peptidomimetic may have promising therapeutic potential for the treatment of hematological cancers.
Cancer Research | 2012
Rong-Hua Tao; Zuzana Berkova; Jillian F Wise; Celine Kerros; Xue Ao; Yong Seok Lee; Haifeng Zhu; Felipe Samaniego
Objective: Many genotoxic therapies, including radiation, depend on intact Fas signaling to eradicate cancer cells. Defective Fas signaling is an important cause of cancer resistance to therapy. Restoring Fas apoptosis or sensitizing cancer cells to Fas-mediated apoptosis would improve the efficacy of many cancer therapies. To elucidate a role for specific regulators of Fas signaling in cancer cells, we sought to identify potential modulators of Fas expressed in cancers and target them to selectively sensitize cancer cells to Fas-mediated apoptosis as a component of chemotherapy. Methods: Liquid chromatography tandem mass spectrometry was used to identify Fas-associated proteins; co-immunoprecipitation and Western blot were used to detect interactions of PMLRARα, PML, c-FLIP and Fas, and to examine the components of death-inducing signaling complex (DISC) and caspase-8 cleavage. Deletional mutagenesis was used to map the interaction domains. PML shRNA lentivirus and As2O3 were used to knock down PML and PMLRARα. Flow cytometry analysis of propidium iodide- and Annexin-V-stained cells was used to detect apoptosis. Mice were transfected with PMLRARα, monitored for survival, and tissues were analyzed for apoptosis by staining for cleaved caspase-3 and TUNEL. Results: We identified promyelocytic leukemia protein (PML) as a Fas-interacting protein using mass spectrometry analysis. The function of PML is blocked by its dominant-negative form PMLRARα. We found PMLRARα interaction with Fas in acute promyelocytic leukemia (APL)-derived cells and APL primary cells, and PML-Fas complexes in normal tissues. Binding of PMLRARα to Fas was mapped to the B-box domain of PML moiety and death domain of Fas. PMLRARα blockage of Fas apoptosis was demonstrated in U937/PR9 cells, human APL cells and transgenic mouse APL cells, in which PMLRARα recruited c-FLIP L/S and excluded procaspase-8 from Fas death signaling complex. PMLRARα expression in mice protected the mice against a lethal dose of agonistic anti-Fas antibody (P Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 4965. doi:1538-7445.AM2012-4965
Blood | 2009
Aref Al-Kali; Dan Jones; Jorge Cortes; Stefan Faderl; Xue Ao; Guillermo Garcia-Manero; Gautam Borthakur; Marina Konopleva; Mark Brandt; Michael Andreeff; Hagop M. Kantarjian; Farhad Ravandi
Archive | 2013
David H. Hawke; Judith E. Karp; Hui Kuan Lin; Jeffrey J. Molldrem; Felipe Samaniego; Rong-Hua Tao; Zuzana Berkova; Jillian F Wise; Abdol-Hossein Rezaeian; Urszula Daniluk; Xue Ao
Blood | 2013
Xue Ao; Frank K Braun; Jillian F Wise; Lalit Sehgal; Felipe Samaniego
Blood | 2012
Felipe Samaniego; Jillian F Wise; Rong-Hua Tao; Haifeng Zhu; Xue Ao; Zeming Chen; Wenzhuo Zhuang; Frank K Braun; Rohit Mathur; Jorge Romaguera; Luis Fayad; Michael Wang; Peter McLaughlin; Timothy J. McDonnell; Keyur P. Patel; Sattva S. Neelapu; Larry W. Kwak; Zuzana Berkova