Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jillian L. Werbeck is active.

Publication


Featured researches published by Jillian L. Werbeck.


Cancer Research | 2008

Fibroblasts Isolated from Common Sites of Breast Cancer Metastasis Enhance Cancer Cell Growth Rates and Invasiveness in an Interleukin-6–Dependent Manner

Adam W. Studebaker; Gianluca Storci; Jillian L. Werbeck; Pasquale Sansone; A. Kate Sasser; Simona Tavolari; Tim H M Huang; Michael W.Y. Chan; Frank C. Marini; Thomas J. Rosol; Massimiliano Bonafè; Brett M. Hall

Common sites of breast cancer metastasis include the lung, liver, and bone, and of these secondary metastatic sites, estrogen receptor alpha (ERalpha)-positive breast cancer often favors bone. Within secondary organs, cancer cells would predictably encounter tissue-specific fibroblasts or their soluble factors, yet our understanding of how tissue-specific fibroblasts directly affect cancer cell growth rates and survival remains largely unknown. Therefore, we tested the hypothesis that mesenchymal fibroblasts isolated from common sites of breast cancer metastasis provide a more favorable microenvironment with respect to tumor growth rates. We found a direct correlation between the ability of breast, lung, and bone fibroblasts to enhance ERalpha-positive breast cancer cell growth and the level of soluble interleukin-6 (IL-6) produced by each organ-specific fibroblast, and fibroblast-mediated growth enhancement was inhibited by the removal or inhibition of IL-6. Interestingly, mice coinjected with MCF-7 breast tumor cells and senescent skin fibroblasts, which secrete IL-6, developed tumors, whereas mice coinjected with presenescent skin fibroblasts that produce little to no IL-6 failed to form xenograft tumors. We subsequently determined that IL-6 promoted growth and invasion of breast cancer cells through signal transducer and activator of transcription 3-dependent up-regulation of Notch-3, Jagged-1, and carbonic anhydrase IX. These data suggest that tissue-specific fibroblasts and the factors they produce can promote breast cancer disease progression and may represent attractive targets for development of new therapeutics.


The Prostate | 2011

Dickkopf-1 (DKK-1) stimulated prostate cancer growth and metastasis and inhibited bone formation in osteoblastic bone metastases

Nanda K. Thudi; Chelsea K. Martin; Sridhar Murahari; Sherry T. Shu; Lisa G. Lanigan; Jillian L. Werbeck; Evan T. Keller; Laurie K. McCauley; Joseph J. Pinzone; Thomas J. Rosol

Osteoblastic bone metastasis is the predominant phenotype observed in prostate cancer patients and is associated with high patient mortality and morbidity. However, the mechanisms determining the development of this phenotype are not well understood. Prostate cancer cells secrete several osteogenic factors including Wnt proteins, which are not only osteoinductive but also oncogenic. Therefore, the purpose of the study was to investigate the contribution of the Wnt signaling pathway in prostate cancer growth, incidence of bone metastases, and osteoblastic phenotype of bone metastases. The strategy involved overexpressing the Wnt antagonist, DKK‐1, in the mixed osteoblastic and osteolytic Ace‐1 prostate cancer cells.


The FASEB Journal | 2010

The midregion, nuclear localization sequence, and C terminus of PTHrP regulate skeletal development, hematopoiesis, and survival in mice.

Ramiro E. Toribio; Holly A. Brown; Chad M. Novince; Brandlyn Marlow; Krista M. Hernon; Lisa G. Lanigan; Blake Eason Hildreth; Jillian L. Werbeck; Sherry T. Shu; Gwendolen Lorch; Michelle M. Carlton; John Foley; Prosper N. Boyaka; Laurie K. McCauley; Thomas J. Rosol

The functions of parathyroid hormone‐related protein (PTHrP) on morphogenesis, cell proliferation, apoptosis, and calcium homeostasis have been attributed to its N terminus. Evidence suggests that many of these effects are not mediated by the N terminus but by the midregion, a nuclear localization sequence (NLS), and C terminus of the protein. A knock‐in mouse lacking the midregion, NLS, and C terminus of PTHrP (Pthrp△/△) was developed. Pthrp△/△ mice had craniofacial dysplasia, chondrodysplasia, and kyphosis, with most mice dying by d 5 of age. In bone, there were fewer chondrocytes and osteoblasts per area, bone mass was decreased, and the marrow was less cellular, with erythroid hypoplasia. Cellular proliferation was impaired, and apoptosis was increased. Runx2, Ocn, Sox9, Crtl1, ß‐catenin, Runx1, ephrin B2, cyclin D1, and Gata1 were underexpressed while P16/ Ink4a, P21, GSK‐3ß, Il‐6, Ffg3, and Ihh were overexpressed. Mammary gland development was aberrant, and energy metabolism was deregulated. These results establish that the midregion, NLS, and C terminus of PTHrP are crucial for the commitment of osteogenic and hematopoietic precursors to their lineages, and for survival, and many of the effects of PTHrP on development are not mediated by its N terminus. The down‐regulation of Runx1, Runx2, and Sox9 indicates that PTHrP is a modulator of transcriptional activation during stem cell commitment. Toribio, R E., Brown, H. A., Novince, C. M., Marlow, B. Hernon, K., Lanigan, L. G., Hildreth III, B. E., Werbeck, J. L., Shu, S. T., Lorch, G., Carlton, M., Foley, J., Boyaka, P., McCauley, L. K., Rosol, T. J. The midregion, nuclear localization sequence, and C terminus of PTHrP regulate skeletal development, hematopoiesis, and survival in mice. FASEB J. 24, 1947–1957 (2010). www.fasebj.org


The Prostate | 2008

Zoledronic Acid Decreased Osteolysis But Not Bone Metastasis in a Nude Mouse Model of Canine Prostate Cancer With Mixed Bone Lesions

Nanda K. Thudi; Chelsea K. Martin; Murali V.P. Nadella; Soledad Fernandez; Jillian L. Werbeck; Joseph J. Pinzone; Thomas J. Rosol

Bone metastasis is the most common cause of morbidity and mortality in patients with advanced prostate cancer and is manifested primarily as mixed osteoblastic and osteolytic lesions. However, the mechanisms responsible for bone metastases in prostate cancer are not clearly understood, in part due to the lack of relevant in vivo models that mimic the clinical presentation of the disease in humans. We previously established a nude mouse model with mixed bone metastases using intracardiac injection of canine prostate cancer cells (Ace‐1). In this study, we hypothesized that tumor‐induced osteolysis promoted the incidence of bone metastases and osteoblastic activity.


Cancer Research | 2010

Zoledronic acid reduces bone loss and tumor growth in an orthotopic xenograft model of osteolytic oral squamous cell carcinoma.

Chelsea K. Martin; Jillian L. Werbeck; Nanda K. Thudi; Lisa G. Lanigan; Tobie D. Wolfe; Ramiro E. Toribio; Thomas J. Rosol

Squamous cell carcinoma (SCC) is the most common form of oral cancer. Destruction and invasion of mandibular and maxillary bone frequently occurs and contributes to morbidity and mortality. We hypothesized that the bisphosphonate drug zoledronic acid (ZOL) would inhibit tumor-induced osteolysis and reduce tumor growth and invasion in a murine xenograft model of bone-invasive oral SCC (OSCC) derived from an osteolytic feline OSCC. Luciferase-expressing OSCC cells (SCCF2Luc) were injected into the perimaxillary subgingiva of nude mice, which were then treated with 100 μg/kg ZOL or vehicle. ZOL treatment reduced tumor growth and prevented loss of bone volume and surface area but had no effect on tumor invasion. Effects on bone were associated with reduced osteolysis and increased periosteal new bone formation. ZOL-mediated inhibition of tumor-induced osteolysis was characterized by reduced numbers of tartrate-resistant acid phosphatase-positive osteoclasts at the tumor-bone interface, where it was associated with osteoclast vacuolar degeneration. The ratio of eroded to total bone surface was not affected by treatment, arguing that ZOL-mediated inhibition of osteolysis was independent of effects on osteoclast activation or initiation of bone resorption. In summary, our results establish that ZOL can reduce OSCC-induced osteolysis and may be valuable as an adjuvant therapy in OSCC to preserve mandibular and maxillary bone volume and function.


Cancer Research | 2007

A Novel Bioluminescent Mouse Model and Effective Therapy for Adult T-Cell Leukemia/Lymphoma

Sherry T. Shu; Murali V.P. Nadella; Wessel P. Dirksen; Soledad Fernandez; Nanda K. Thudi; Jillian L. Werbeck; Michael D. Lairmore; Thomas J. Rosol

Adult T-cell /lymphomaleukemia (ATLL) is caused by human T-cell lymphotropic virus type 1 (HTLV-1). Approximately 80% of ATLL patients develop humoral hypercalcemia of malignancy (HHM), a life-threatening complication leading to a poor prognosis. Parathyroid hormone-related protein (PTHrP) and macrophage inflammatory protein-1 alpha (MIP-1 alpha) are important factors in the pathogenesis of HHM in ATLL and the expression of PTHrP can be activated by nuclear factor kappaB (NF-kappaB). NF-kappaB is constitutively activated in ATLL cells and is essential for leukemogenesis including transformation of lymphocytes infected by HTLV-1. Our goal was to evaluate the effects of NF-kappaB disruption by a proteasomal inhibitor (PS-341) and osteoclastic inhibition by zoledronic acid (Zol) on the development of ATLL and HHM using a novel bioluminescent mouse model. We found that PS-341 decreased cell viability, increased apoptosis, and down-regulated PTHrP expression in ATLL cells in vitro. To investigate the in vivo efficacy, nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice were xenografted with ATLL cells and treated with vehicle control, PS-341, Zol, or a combination of PS-341 and Zol. Bioluminescent imaging and tumor cell count showed a significant reduction in tumor burden in mice from all treatment groups. All treatments also significantly reduced the plasma calcium concentrations. Zol treatment increased trabecular bone volume and decreased osteoclast parameters. PS-341 reduced PTHrP and MIP-1 alpha expression in tumor cells in vivo. Our results indicate that both PS-341 and Zol are effective treatments for ATLL and HHM, which are refractory to conventional therapy.


Oral Oncology | 2012

Characterization of bone resorption in novel in vitro and in vivo models of oral squamous cell carcinoma.

Chelsea K. Martin; Wessel P. Dirksen; Sherry T. Shu; Jillian L. Werbeck; Nanda K. Thudi; Mamoru Yamaguchi; Tobie D. Wolfe; Kristin N. Heller; Thomas J. Rosol

Oral squamous cell carcinoma (OSCC) is the most commonly diagnosed oral malignancy in humans and cats and frequently invades bone. The objective of this study was to determine if feline OSCC serves as a relevant model of human OSCC in terms of osteolytic behavior and expression of bone resorption agonists. Novel feline OSCC cell lines (SCCF2 and SCCF3) were derived from spontaneous carcinomas. Gene expression and osteolytic behavior were compared to an established feline OSCC cell line (SCCF1) and three human OSCC cell lines (UMSCC-12, A253 and SCC25). Interaction of OSCC with bone and murine pre-osteoblasts (MC3T3) was investigated using in vitro co-culture techniques. In vivo bioluminescent imaging, Faxitron radiography and microscopy were used to measure xenograft growth and bone invasion in nude mice. Human and feline OSCC expressing the highest levels of parathyroid hormone-related protein (PTHrP) were associated with in vitro and in vivo bone resorption and osteoclastogenesis. MC3T3 cells had increased receptor activator of nuclear factor κB ligand (RANKL) expression and reduced osteoprotegerin (OPG) expression in conditioned medium from bone-invasive SCCF2 cells compared to minimally bone invasive SCCF3 cells, which was partially reversed with a neutralizing anti-PTHrP antibody. Human and feline OSCC cells cultured in bone-conditioned medium had increased PTHrP secretion and proliferation. Feline OSCC-induced bone resorption was associated with tumor cell secretion of PTHrP and with increased RANKL:OPG expression ratio in mouse preosteoblasts. Bone-CM increased OSCC proliferation and secretion of PTHrP. The preclinical models of feline OSCC recapitulated the bone-invasive phenotype characteristic of spontaneous OSCC and will be useful to future preclinical and mechanistic studies of bone invasive behavior.


The Prostate | 2011

Development of a brain metastatic canine prostate cancer cell line

Nanda K. Thudi; Sherry T. Shu; Chelsea K. Martin; Lisa G. Lanigan; Murali V.P. Nadella; Adrie van Bokhoven; Jillian L. Werbeck; Jessica K. Simmons; Sridhar Murahari; William C. Kisseberth; Matthew Breen; Christina Williams; Ching-Shih Chen; Laurie K. McCauley; Evan T. Keller; Thomas J. Rosol

Prostate cancer in men has a high mortality and morbidity due to metastatic disease. The pathobiology of prostate cancer metastasis is not well understood and cell lines and animal models that recapitulate the complex nature of the disease are needed. Therefore, the goal of the study was to establish and characterize a new prostate cancer line derived from a dog with spontaneous prostate cancer.


Clinical & Experimental Metastasis | 2011

Effect of zoledronic acid and amputation on bone invasion and lung metastasis of canine osteosarcoma in nude mice

Tobie D. Wolfe; Smitha Pankajavally Somanathan Pillai; Blake Eason Hildreth; Lisa G. Lanigan; Chelsea K. Martin; Jillian L. Werbeck; Thomas J. Rosol

Osteosarcoma (OSA) is an aggressive, highly metastatic and lytic primary bone neoplasm commonly affecting the appendicular skeleton of dogs and children. Current treatment options include amputation of the afflicted limb, limb-sparing procedures, or palliative radiation with or without adjunct chemotherapy. Therapies that inhibit bone resorption, such as the bisphosphonates, may be an effective palliative therapy by limiting the local progression of OSA in those patients that are not viable candidates for amputation. We have developed a mouse model of canine skeletal OSA following intratibial inoculation of OSCA40 cells that spontaneously metastasized to the lungs. We demonstrated that therapy with a nitrogen-containing bisphosphonate, zoledronic acid (Zol), reduced OSA-induced bone lysis; however, Zol monotherapy or in combination with amputation was not effective at inhibiting pulmonary metastasis. While not reaching statistical significance, amputation of the tumor-bearing limb reduced the average incidence of lung metastases; however, this effect was nullified when Zol was added to the treatment protocol. In untreated mice, the magnitude of proximal tibial lysis was significantly correlated with the incidence of metastasis. The data support amputation alone for the management of appendicular OSA rather than combining amputation with Zol. However, in patients that are not viable candidates for amputation, Zol may be a useful palliative therapy for OSA by reducing the magnitude of lysis and therefore bone pain, despite the risk of increased pulmonary metastasis.


Journal of Surgical Research | 2010

PTHrP 1-141 and 1-86 increase in vitro bone formation.

Blake Eason Hildreth; Jillian L. Werbeck; Nandu K. Thudi; Xiyun Deng; Thomas J. Rosol; Ramiro E. Toribio

BACKGROUND Parathyroid hormone-related protein (PTHrP) has anabolic effects in bone, which has led to the clinical use of N-terminal fragments of PTHrP and PTH. Since 10% to 20% of fractures demonstrate healing complications and osteoporosis continues to be a debilitating disease, the development of bone-forming agents is of utmost importance. Due to evidence that regions of PTHrP other than the N-terminus may have bone-forming effects, this study was designed to compare the effects of full-length PTHrP 1-141 to N-terminal PTHrP 1-86 on in vitro bone formation. MATERIALS AND METHODS MC3T3-E1 pre-osteoblasts were treated once every 6 d for 36 d with 5, 25, and 50 pM of PTHrP 1-141 or 1-86 for 1 or 24 h. Cells were also treated after blocking the N-terminus, the nuclear localization sequence (NLS), and the C-terminus of PTHrP, individually and in combination. Area of mineralization, alkaline phosphatase (ALP), and osteocalcin (OCN) were measured. RESULTS PTHrP 1-141 and 1-86 increased mineralization after 24-h treatments, but not 1-h. PTHrP 1-141 was more potent than 1-86. Treatment with PTHrP 1-141 for 24-h, but not 1-86, resulted in a concentration-dependent increase in ALP, with no effect after 1-h. Exposure to both peptides for 1- or 24-h induced a concentration-dependent increase in OCN, with 24-h exceeding 1-h. Antibody blocking revealed that the NLS and C-terminus are anabolic. CONCLUSIONS Both PTHrP 1-141 and 1-86 increased in vitro bone formation; however, PTHrP 1-141 was more effective. The NLS and C-terminus have anabolic effects distinct from the N-terminus. This demonstrates the advantage of PTHrP 1-141 as a skeletal anabolic agent.

Collaboration


Dive into the Jillian L. Werbeck's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge