Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jim Fong is active.

Publication


Featured researches published by Jim Fong.


Journal of Cell Science | 2009

A novel mechanism of sodium iodide symporter repression in differentiated thyroid cancer.

Vicki Smith; Martin L. Read; Andrew S. Turnell; Rachel Watkins; John C. Watkinson; Greg Lewy; Jim Fong; Sally R. James; Margaret C. Eggo; Kristien Boelaert; Jayne A. Franklyn; Christopher J. McCabe

Differentiated thyroid cancers and their metastases frequently exhibit reduced iodide uptake, impacting on the efficacy of radioiodine ablation therapy. PTTG binding factor (PBF) is a proto-oncogene implicated in the pathogenesis of thyroid cancer. We recently reported that PBF inhibits iodide uptake, and have now elucidated a mechanism by which PBF directly modulates sodium iodide symporter (NIS) activity in vitro. In subcellular localisation studies, PBF overexpression resulted in the redistribution of NIS from the plasma membrane into intracellular vesicles, where it colocalised with the tetraspanin CD63. Cell-surface biotinylation assays confirmed a reduction in plasma membrane NIS expression following PBF transfection compared with vector-only treatment. Coimmunoprecipitation and GST-pull-down experiments demonstrated a direct interaction between NIS and PBF, the functional consequence of which was assessed using iodide-uptake studies in rat thyroid FRTL-5 cells. PBF repressed iodide uptake, whereas three deletion mutants, which did not localise within intracellular vesicles, lost the ability to inhibit NIS activity. In summary, we present an entirely novel mechanism by which the proto-oncogene PBF binds NIS and alters its subcellular localisation, thereby regulating its ability to uptake iodide. Given that PBF is overexpressed in thyroid cancer, these findings have profound implications for thyroid cancer ablation using radioiodine.


Cancer Research | 2011

Proto-oncogene PBF/PTTG1IP Regulates Thyroid Cell Growth and Represses Radioiodide Treatment

Martin Read; Greg Lewy; Jim Fong; Neil Sharma; Robert Seed; Vicki Smith; Erica Gentilin; Adrian Warfield; Margaret C. Eggo; Jeffrey A. Knauf; Wendy Leadbeater; John C. Watkinson; Jayne A. Franklyn; Kristien Boelaert; Christopher J. McCabe

Pituitary tumor transforming gene (PTTG)-binding factor (PBF or PTTG1IP) is a little characterized proto-oncogene that has been implicated in the etiology of breast and thyroid tumors. In this study, we created a murine transgenic model to target PBF expression to the thyroid gland (PBF-Tg mice) and found that these mice exhibited normal thyroid function, but a striking enlargement of the thyroid gland associated with hyperplastic and macrofollicular lesions. Expression of the sodium iodide symporter (NIS), a gene essential to the radioiodine ablation of thyroid hyperplasia, neoplasia, and metastasis, was also potently inhibited in PBF-Tg mice. Critically, iodide uptake was repressed in primary thyroid cultures from PBF-Tg mice, which could be rescued by PBF depletion. PBF-Tg thyroids exhibited upregulation of Akt and the TSH receptor (TSHR), each known regulators of thyrocyte proliferation, along with upregulation of the downstream proliferative marker cyclin D1. We extended and confirmed findings from the mouse model by examining PBF expression in human multinodular goiters (MNG), a hyperproliferative thyroid disorder, where PBF and TSHR was strongly upregulated relative to normal thyroid tissue. Furthermore, we showed that depleting PBF in human primary thyrocytes was sufficient to increase radioiodine uptake. Together, our findings indicate that overexpression of PBF causes thyroid cell proliferation, macrofollicular lesions, and hyperplasia, as well as repression of the critical therapeutic route for radioiodide uptake.


Endocrinology | 2012

PTTG-Binding Factor (PBF) Is a Novel Regulator of the Thyroid Hormone Transporter MCT8

Vicki Smith; Martin Read; Andrew S. Turnell; Neil Sharma; Gregory Lewy; Jim Fong; Robert Seed; Perkin Kwan; Gavin Ryan; Hisham M. Mehanna; Shiao Chan; Veerle Darras; Kristien Boelaert; Jayne A. Franklyn; Christopher J. McCabe

Within the basolateral membrane of thyroid follicular epithelial cells, two transporter proteins are central to thyroid hormone (TH) biosynthesis and secretion. The sodium iodide symporter (NIS) delivers iodide from the bloodstream into the thyroid, and after TH biosynthesis, monocarboxylate transporter 8 (MCT8) mediates TH secretion from the thyroid gland. Pituitary tumor-transforming gene-binding factor (PBF; PTTG1IP) is a protooncogene that is up-regulated in thyroid cancer and that binds NIS and modulates its subcellular localization and function. We now show that PBF binds MCT8 in vitro, eliciting a marked shift in MCT8 subcellular localization and resulting in a significant reduction in the amount of MCT8 at the plasma membrane as determined by cell surface biotinylation assays. Colocalization and interaction between PBF and Mct8 was also observed in vivo in a mouse model of thyroid-specific PBF overexpression driven by a bovine thyroglobulin (Tg) promoter (PBF-Tg). Thyroidal Mct8 mRNA and protein expression levels were similar to wild-type mice. Critically, however, PBF-Tg mice demonstrated significantly enhanced thyroidal TH accumulation and reduced TH secretion upon TSH stimulation. Importantly, Mct8-knockout mice share this phenotype. These data show that PBF binds and alters the subcellular localization of MCT8 in vitro, with PBF overexpression leading to an accumulation of TH within the thyroid in vivo. Overall, these studies identify PBF as the first protein to interact with the critical TH transporter MCT8 and modulate its function in vivo. Furthermore, alongside NIS repression, PBF may thus represent a new regulator of TH biosynthesis and secretion.


Molecular and Cellular Endocrinology | 2007

The emerging role of pituitary tumour transforming gene (PTTG) in endocrine tumourigenesis

Dae S. Kim; Jim Fong; Martin Read; Christopher J. McCabe

It is now 10 years since PTTG was first cloned and isolated. Perhaps the major story of the intervening decade of work performed by numerous groups around the world is the sheer multifunctionality ascribed to this gene. PTTG has been implicated in mechanisms of gene transactivation, cell transformation, angiogenesis, metabolism, apoptosis, DNA repair, genetic instability and mitotic control, both in endocrine and non-endocrine settings. In the current review, we cast a critical eye over a decade of PTTG research within the field of endocrine neoplasia.


Endocrinology | 2014

The PTTG1-Binding Factor (PBF/PTTG1IP) Regulates p53 Activity in Thyroid Cells

Martin Read; Robert Seed; Jim Fong; Bhavika Modasia; Gavin Ryan; Rachel Watkins; Teresa Gagliano; Vicki Smith; Anna L. Stratford; Perkin Kwan; Neil Sharma; Olivia M. Dixon; John C. Watkinson; Kristien Boelaert; Jayne A. Franklyn; Andrew S. Turnell; Christopher J. McCabe

The PTTG1-binding factor (PBF/PTTG1IP) has an emerging repertoire of roles, especially in thyroid biology, and functions as a protooncogene. High PBF expression is independently associated with poor prognosis and lower disease-specific survival in human thyroid cancer. However, the precise role of PBF in thyroid tumorigenesis is unclear. Here, we present extensive evidence demonstrating that PBF is a novel regulator of p53, a tumor suppressor protein with a key role in maintaining genetic stability, which is infrequently mutated in differentiated thyroid cancer. By coimmunoprecipitation and proximity-ligation assays, we show that PBF binds specifically to p53 in thyroid cells and significantly represses transactivation of responsive promoters. Further, we identify that PBF decreases p53 stability by enhancing ubiquitination, which appears dependent on the E3 ligase activity of Mdm2. Impaired p53 function was evident in a transgenic mouse model with thyroid-specific PBF overexpression (transgenic PBF mice), which had significantly increased genetic instability as indicated by fluorescent inter simple sequence repeat-PCR analysis. Consistent with this, approximately 40% of all DNA repair genes examined were repressed in transgenic PBF primary cultures, including genes with critical roles in maintaining genomic integrity such as Mgmt, Rad51, and Xrcc3. Our data also revealed that PBF induction resulted in up-regulation of the E2 enzyme Rad6 in murine thyrocytes and was associated with Rad6 expression in human thyroid tumors. Overall, this work provides novel insights into the role of the protooncogene PBF as a negative regulator of p53 function in thyroid tumorigenesis, in which PBF is generally overexpressed and p53 mutations are rare compared with other tumor types.


Endocrinology | 2013

Regulation of pituitary tumor transforming gene (PTTG) expression and phosphorylation in thyroid cells.

Gregory Lewy; Gavin Ryan; Martin Read; Jim Fong; Vikki Poole; Robert Seed; Neil Sharma; Vicki Smith; Perkin Kwan; Sarah Stewart; Andrea Bacon; Adrian Warfield; Jayne A. Franklyn; Christopher J. McCabe; Kristien Boelaert

Human pituitary tumor transforming gene (hPTTG) is a multifunctional proto-oncogene implicated in the initiation and progression of several tumors. Phosphorylation of hPTTG is mediated by cyclin-dependent kinase 2 (CDC2), whereas cellular expression is regulated by specificity protein 1 (SP1). The mechanisms underlying hPTTG propagation of aberrant thyroid cell growth have not been fully defined. We set out to investigate the interplay between hPTTG and growth factors, as well as the effects of phosphorylation and SP1 regulation on hPTTG expression and function. In our study, epidermal growth factor (EGF), TGFα, and IGF-1 induced hPTTG expression and phosphorylation in thyroid cells, which was associated with activation of MAPK and phosphoinositide 3-kinase. Growth factors induced hPTTG independently of CDC2 and SP1 in thyroid carcinoma cells. Strikingly, CDC2 depletion in TPC-1 cells resulted in enhanced expression and phosphorylation of hPTTG and reduced cellular proliferation. In reciprocal experiments, hPTTG overexpression induced EGF, IGF-1, and TGFα mRNAs in primary human thyrocytes. Treatment of primary human thyrocytes with conditioned media derived from hPTTG-transfected cells resulted in autocrine upregulation of hPTTG protein, which was ameliorated by growth factor depletion or growth factor receptor tyrosine kinase inhibitors. A transgenic murine model of thyroid targeted hPTTG overexpression (hPTTG-Tg) (FVB/N strain, both sexes) demonstrated smaller thyroids with reduced cellular proliferation and enhanced secretion of Egf. In contrast, Pttg(-/-) knockout mice (c57BL6 strain, both sexes) showed reduced thyroidal Egf mRNA expression. These results define hPTTG as having a central role in thyroid autocrine signaling mechanisms via growth factors, with profound implications for promotion of transformed cell growth.


Thyroid Research | 2017

Meeting abstracts from the 64th British Thyroid Association Annual Meeting

Luigi Bartalena; Eric Fliers; Nicola Hellen; Peter N. Taylor; Arron Lacey; Daniel Thayer; Mohd Draman Yusof; Arshiya Tabasum; Illaria Muller; Luke Marsh; Marian Ludgate; Alex Rees; Kristien Boelaert; Shiao Chan; Scott M. Nelson; Aled Rees; John H. Lazarus; Colin Mark Dayan; Bijay Vaidya; Onyebuchi E. Okosieme; Vikki Poole; Alice Fletcher; Bhavika Modasia; Neil Sharma; Rebecca Thompson; Waraporn Imruetaicharoenchoke; Martin Read; Christopher J. McCabe; Vicki Smith; Jim Fong

• Users may freely distribute the URL that is used to identify this publication. • Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. • User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) • Users may not further distribute the material nor use it for the purposes of commercial gain.Graves’ orbitopathy (GO) is the main extrathyroidal manifestation of Graves’ disease. When fully expressed, it is characterized by inflammatory soft tissue changes, exophthalmos, ocular dysmotility causing diplopia, and, rarely, sight-threatening dysthyroid optic neuropathy (DON). The prevalence of GO among Graves’ patients seems lately declining, probably due to early diagnosis, early intervention on risk factors associated with its occurrence or progression (smoking, uncontrolled thyroid dysfunction), early correction of hyper and hypothyroidism. Only about 25–30% of newly diagnosed Graves’ hyperthyroids are affected with GO, which is usually mild and rarely progressive. Assessment of activity and severity of GO according to standardized criteria is fundamental to plan management. The European Thyroid Association and the European Group on Graves’ Orbitopathy (EUGOGO) have recently published the first guideline on management of GO. Mild GO usually requires only a watchful strategy, in addition to local measures (eye drops, ointments) and removal of risk factors. Intravenous glucocorticoids (ivGCs) are the first-line treatment for moderate-to-severe and active GO, as demonstrated by randomized clinical trials. When ivGCs fail or GO recurs after treatment withdrawal, options include a second course of ivGCs, oral GCs combined with orbital radiotherapy or cyclosporine, rituximab. Evidence that the any of the above treatment be effective in the context of a poor response to a first course of ivGCs is limited and should be investigated in larger studies. In addition to rituximab, ongoing investigations are exploring the role of other biologics targeting, e.g., the IGF-1 receptor or the IL-6 receptor, and results will probably available in 1–2 years. When GO has been treated medically and is inactive, rehabilitative surgery (orbital decompression, squint surgery, eyelid surgery) is often needed.


Thyroid Research | 2017

Meeting abstracts from the 64th British Thyroid Association Annual Meeting: Newcastle, UK. 13/05/2016

Luigi Bartalena; Eric Fliers; Nicola Hellen; Peter N. Taylor; Arron Lacey; Daniel Thayer; Mohd Draman Yusof; Arshiya Tabasum; Illaria Muller; Luke Marsh; Marian Ludgate; Alex Rees; Kristien Boelaert; Shiao Chan; Scott M. Nelson; Aled Rees; John H. Lazarus; Colin Mark Dayan; Bijay Vaidya; Onyebuchi E. Okosieme; Vikki Poole; Alice Fletcher; Bhavika Modasia; Neil Sharma; Rebecca Thompson; Waraporn Imruetaicharoenchoke; Martin Read; Christopher J. McCabe; Vicki Smith; Jim Fong

• Users may freely distribute the URL that is used to identify this publication. • Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. • User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) • Users may not further distribute the material nor use it for the purposes of commercial gain.Graves’ orbitopathy (GO) is the main extrathyroidal manifestation of Graves’ disease. When fully expressed, it is characterized by inflammatory soft tissue changes, exophthalmos, ocular dysmotility causing diplopia, and, rarely, sight-threatening dysthyroid optic neuropathy (DON). The prevalence of GO among Graves’ patients seems lately declining, probably due to early diagnosis, early intervention on risk factors associated with its occurrence or progression (smoking, uncontrolled thyroid dysfunction), early correction of hyper and hypothyroidism. Only about 25–30% of newly diagnosed Graves’ hyperthyroids are affected with GO, which is usually mild and rarely progressive. Assessment of activity and severity of GO according to standardized criteria is fundamental to plan management. The European Thyroid Association and the European Group on Graves’ Orbitopathy (EUGOGO) have recently published the first guideline on management of GO. Mild GO usually requires only a watchful strategy, in addition to local measures (eye drops, ointments) and removal of risk factors. Intravenous glucocorticoids (ivGCs) are the first-line treatment for moderate-to-severe and active GO, as demonstrated by randomized clinical trials. When ivGCs fail or GO recurs after treatment withdrawal, options include a second course of ivGCs, oral GCs combined with orbital radiotherapy or cyclosporine, rituximab. Evidence that the any of the above treatment be effective in the context of a poor response to a first course of ivGCs is limited and should be investigated in larger studies. In addition to rituximab, ongoing investigations are exploring the role of other biologics targeting, e.g., the IGF-1 receptor or the IL-6 receptor, and results will probably available in 1–2 years. When GO has been treated medically and is inactive, rehabilitative surgery (orbital decompression, squint surgery, eyelid surgery) is often needed.


Thyroid Research | 2017

Comparative analysis of human and mouse expression data identifies proto-oncogene PTTG- and PBF-associated genes in thyroid cancer

Martin Read; Jim Fong; Waraporn Imruetaicharoenchoke; Bhavika Modasia; Hannah Nieto; Alice Fletcher; Rebecca Thompson; Neil Sharma; John C. Watkinson; Andrew S. Turnell; Kristien Boelaert; Vicki Smith; Christopher McCabe

• Users may freely distribute the URL that is used to identify this publication. • Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. • User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) • Users may not further distribute the material nor use it for the purposes of commercial gain.Graves’ orbitopathy (GO) is the main extrathyroidal manifestation of Graves’ disease. When fully expressed, it is characterized by inflammatory soft tissue changes, exophthalmos, ocular dysmotility causing diplopia, and, rarely, sight-threatening dysthyroid optic neuropathy (DON). The prevalence of GO among Graves’ patients seems lately declining, probably due to early diagnosis, early intervention on risk factors associated with its occurrence or progression (smoking, uncontrolled thyroid dysfunction), early correction of hyper and hypothyroidism. Only about 25–30% of newly diagnosed Graves’ hyperthyroids are affected with GO, which is usually mild and rarely progressive. Assessment of activity and severity of GO according to standardized criteria is fundamental to plan management. The European Thyroid Association and the European Group on Graves’ Orbitopathy (EUGOGO) have recently published the first guideline on management of GO. Mild GO usually requires only a watchful strategy, in addition to local measures (eye drops, ointments) and removal of risk factors. Intravenous glucocorticoids (ivGCs) are the first-line treatment for moderate-to-severe and active GO, as demonstrated by randomized clinical trials. When ivGCs fail or GO recurs after treatment withdrawal, options include a second course of ivGCs, oral GCs combined with orbital radiotherapy or cyclosporine, rituximab. Evidence that the any of the above treatment be effective in the context of a poor response to a first course of ivGCs is limited and should be investigated in larger studies. In addition to rituximab, ongoing investigations are exploring the role of other biologics targeting, e.g., the IGF-1 receptor or the IL-6 receptor, and results will probably available in 1–2 years. When GO has been treated medically and is inactive, rehabilitative surgery (orbital decompression, squint surgery, eyelid surgery) is often needed.


Society for Endocrinology BES 2015 | 2015

Distinct p53 response profiles in transgenic mouse models of thyroid-specific PBF and PTTG expression

Martin Read; Jim Fong; Waraporn Imruetaicharoenchoke; Bhavika Modasia; Greg Lewy; Gavin Ryan; Neil Sharma; Vicki Smith; John C. Watkinson; Kristien Boelaert; Andrew S. Turnell; Christopher J. McCabe

• Users may freely distribute the URL that is used to identify this publication. • Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. • User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) • Users may not further distribute the material nor use it for the purposes of commercial gain.

Collaboration


Dive into the Jim Fong's collaboration.

Top Co-Authors

Avatar

Martin Read

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Vicki Smith

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neil Sharma

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Gavin Ryan

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Robert Seed

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jayne Franklyn

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory Lewy

University of Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge