Jim Mattsson
Simon Fraser University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jim Mattsson.
Planta | 1996
Gerhard K. H. Przemeck; Jim Mattsson; Christian S. Hardtke; Z. Renee Sung; Thomas Berleth
In the embryo of Arabidopsis thaliana (L.) Heynh., formation of the hypocotyl/root axis is initiated at the early-globular stage, recognizable as oriented expansion of formerly isodiametric cells. The process depends on the activity of the gene MONOPTEROS (MP); mp mutant embryos fail to produce hypocotyl and radicle. We have analyzed the morphology and anatomy of mp mutant plants throughout the Arabidopsis life cycle. Mutants form largely normal rosettes and root systems, but inflorescences either fail to form lateral flowers or these flowers are greatly reduced. Furthermore, the auxin transport capacity of inflorescence axes is impaired and the vascular strands in all analyzed organs are distorted. These features of the mutant phenotype suggest that the MP gene promotes cell axialization and cell file formation at multiple stages of plant development.
Plant Physiology | 2003
Jim Mattsson; Wenzislava Ckurshumova; Thomas Berleth
A number of observations have implicated auxin in the formation of vascular tissues in plant organs. These include vascular strand formation in response to local auxin application, the effects of impaired auxin transport on vascular patterns and suggestive phenotypes of Arabidopsis auxin response mutants. In this study, we have used molecular markers to visualize auxin response patterns in developing Arabidopsis leaves as well as Arabidopsis mutants and transgenic plants to trace pathways of auxin signal transduction controlling the expression of early procambial genes. We show that in young Arabidopsis leaf primordia, molecular auxin response patterns presage sites of procambial differentiation. This is the case not only in normal development but also upon experimental manipulation of auxin transport suggesting that local auxin signals are instrumental in patterning Arabidopsis leaf vasculature. We further found that the activity of the Arabidopsis gene MONOPTEROS, which is required for proper vascular differentiation, is also essential in a spectrum of auxin responses, which include the regulation of rapidly auxin-inducible AUX/IAA genes, and discovered the tissue-specific vascular expression profile of the class I homeodomain-leucine zipper gene, AtHB20. Interestingly, MONOPTEROSactivity is a limiting factor in the expression of AtHB8and AtHB20, two genes encoding transcriptional regulators expressed early in procambial development. Our observations connect general auxin signaling with early controls of vascular differentiation and suggest molecular mechanisms for auxin signaling in patterned cell differentiation.
Trends in Plant Science | 2000
Thomas Berleth; Jim Mattsson; Christian S. Hardtke
Plant vascular tissues form systems of interconnected cell files throughout the plant body. Vascular tissues usually differentiate at predictable positions but the wide range of functional patterns generated in response to abnormal growth conditions or wounding reveals partially self-organizing patterning mechanisms. Signals ensuring aligned cell differentiation within vascular strands are crucial in self-organized vascular patterning, and the apical-basal flow of indole acetic acid has been suspected to act as an orienting signal in this process. Several recent advances appear to converge on a more precise definition of the role of auxin flow in vascular tissue patterning.
RNA | 2008
Elena V. Dolgosheina; Ryan D. Morin; Gozde Aksay; S. Cenk Sahinalp; Vincent Magrini; Elaine R. Mardis; Jim Mattsson; Peter J. Unrau
Plants produce small RNAs to negatively regulate genes, viral nucleic acids, and repetitive elements at either the transcriptional or post-transcriptional level in a process that is referred to as RNA silencing. While RNA silencing has been extensively studied across the different phyla of the animal kingdom (e.g., mouse, fly, worm), similar studies in the plant kingdom have focused primarily on angiosperms, thus limiting evolutionary studies of RNA silencing in plants. Here we report on an unexpected phylogenetic difference in the size distribution of small RNAs among the vascular plants. By extracting total RNA from freshly growing shoot tissue, we conducted a survey of small RNAs in 24 vascular plant species. We find that conifers, which radiated from the other seed-bearing plants approximately 260 million years ago, fail to produce significant amounts of 24-nucleotide (nt) RNAs that are known to guide DNA methylation and heterochromatin formation in angiosperms. Instead, they synthesize a diverse population of small RNAs that are exactly 21-nt long. This finding was confirmed by high-throughput sequencing of the small RNA sequences from a conifer, Pinus contorta. A conifer EST search revealed the presence of a novel Dicer-like (DCL) family, which may be responsible for the observed change in small RNA expression. No evidence for DCL3, an enzyme that matures 24-nt RNAs in angiosperms, was found. We hypothesize that the diverse class of 21-nt RNAs found in conifers may help to maintain organization of their unusually large genomes.
Plant Molecular Biology | 1992
Jim Mattsson; Eva Söderman; Marie Svenson; Chumpol Borkird; Peter Engström
We have isolated a homeobox-containing gene from Arabidopsis thaliana using a degenerate oligonucleotide probe corresponding to the most conserved region of the homeodomain. This strategy has been used previously to isolate homeobox-containing genes from Caenorhabditis, and recently from A. thaliana. The Arabidopsis genes have an unusual structure in that they have a leucine zipper motif adjacent to the carboxy terminal region of the homeo domain, a feature not found in homeobox-containing genes isolated from animals. We report the isolation and primary structure of a new member of this Arabidopsis homeobox-leucine zipper gene family. This new member has the homeodomain and leucine-zipper motif similar to the two genes previously identified, but differs from these genes in the part corresponding to the carboxy terminus of the polypeptide, as well as in size and isoelectric point of the protein.
Plant Molecular Biology | 1994
Eva Söderman; Jim Mattsson; Marie Svenson; Chumpol Borkird; Peter Engström
A recently discovered class of genes in Arabidopsis thaliana encode putative transcription factors which contain a homeodomain closely linked to a leucine zipper motif. We have previously reported on the cloning and cDNA sequence of one gene of this class, Athb-3. In this article we show this gene to be expressed predominantly in the cortex of the root and the stem. Using the Athb-3 clone as a probe we have isolated cDNA clones corresponding to three novel homeodomain-leucine zipper proteins. These clones, Athb-5, Athb-6 and Athb-7, hybridized to transcripts that were relatively abundant in the leaf, but also present in other vegetative organs, as well as in the flower. Only weak hybridization was observed to seed pod samples. These observations indicate that these Athb genes have major functions in the mature plant, and therefore, in contrast to homeobox genes in other eukaryotes and to the kn-1 gene in maize, are unlikely to function in the primary control of developmental processes during embryogenesis or organogenesis. The deduced amino acid sequences of Athb-5, Athb-6 and Athb-7 are highly similar to the previously isolated Athb-1, Athb-2 and Athb-3 in the homeodomain and leucine-zipper parts of the proteins, whereas the similarities to homeodomain proteins from other eukaryotes are limited. The Athb proteins,thus constitute a new and well defined class of homeodomain proteins, apparently unique to plants.
Current Opinion in Plant Biology | 2000
Thomas Berleth; Jim Mattsson
The plant hormone auxin has been implicated in vascular development, but the molecular details of patterned vascular differentiation have remained elusive. Research in the past year has identified new genes that control vascular patterning, and auxin transport and perception. New experimental strategies have been employed to study vascular development. Together, these findings have generated a conceptual framework and experimental tools for the exploration of vascular-tissue patterning at the molecular level.
Plant Physiology | 2008
Mathias Schuetz; Thomas Berleth; Jim Mattsson
Initiation of leaves at the flanks of the shoot apical meristem occurs at sites of auxin accumulation and pronounced expression of auxin-inducible PIN-FORMED1 (PIN) genes, suggesting a feedback loop to progressively focus auxin in concrete spots. Because PIN expression is regulated by auxin response factor activity, including MONOPTEROS (MP), it appeared possible that MP affects leaf formation as a positive regulator of PIN genes and auxin transport. Here, we analyze a novel, completely leafless phenotype arising from simultaneous interference with both auxin signaling and auxin transport. We show that mp pin1 double mutants, as well as mp mutants treated with auxin-efflux inhibitors, display synergistic abnormalities not seen in wild type regardless of how strongly auxin transport was reduced. The synergism of abnormalities indicates that the role of MP in shoot meristem organization is not limited to auxin transport regulation. In the mp mutant background, auxin transport inhibition completely abolishes leaf formation. Instead of forming leaves, the abnormal shoot meristems dramatically increase in size, harboring correspondingly enlarged expression domains of CLAVATA3 and SHOOTMERISTEMLESS, molecular markers for the central stem cell zone and the complete meristem, respectively. The observed synergism under conditions of auxin efflux inhibition was further supported by an unrestricted PIN1 expression in mp meristems, as compared to a partial restriction in wild-type meristems. Auxin transport-inhibited mp meristems also lacked detectable auxin maxima. We conclude that MP promotes the focusing of auxin and leaf initiation in part through pathways not affected by auxin efflux inhibitors.
Plant and Cell Physiology | 2008
Carol L. Wenzel; Qian Hester; Jim Mattsson
The genetic basis of vascular differentiation and function is relatively poorly understood, partly due to the difficulty of screening for mutants defective in internal vascular tissues. Here we present an approach based on a predicted increase in vascular-related gene expression in response to an auxin transport inhibitor-induced vascular overgrowth. We used microarray analyses to identify 336 genes that were up-regulated > or =2-fold in shoot tissues of Arabidopsis thaliana showing vascular overgrowth. Promoter-marker gene fusions revealed that 38 out of 40 genes with > or =4-fold up-regulation in vascular overgrowth tissues had vascular-related expression in transgenic Arabidopsis plants. Obtained expression patterns included cambial tissues and differentiating xylem, phloem and fibers. A total of 15 genes were found to have vascular-specific expression patterns in the leaves and/or inflorescence stems. This study provides empirical evidence of the efficiency of the approach and describes for the first time the in situ expression patterns of the majority of the assessed genes.
Plant Growth Regulation | 2000
Thomas Berleth; Jim Mattsson; Christian S. Hardtke
Phytohormones have been implicated in vascular development in various ways, but their precise function and the extent of their influence is still controversial. Recent results from experimental manipulation of developing organs and Arabidopsis developmental genetics support a role for polar auxin flow in cell axis formation within the vascular system and, interestingly, also in the embryonic establishment of the plant body axis. Vascular responses to auxin transport inhibition indicate patterns of auxin distribution during leaf development and new technologies may enable these predictions to be tested within the near future. Moreover, recently discovered Arabidopsis axialisation mutants seem to identify essential genes that relay auxin signals in vascular development. A first gene in this class, MONOPTEROS (MP) has been cloned and encodes a transcription factor capable of binding to auxin response elements in the control regions of auxin regulated genes. Molecular identification of further axialisation genes may provide access to a mechanistic understanding of plant cell axis formation.