Jim Tartaglia
Sanofi Pasteur
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jim Tartaglia.
The New England Journal of Medicine | 2009
Supachai Rerks-Ngarm; Punnee Pitisuttithum; Sorachai Nitayaphan; Jaranit Kaewkungwal; Joseph Chiu; Robert Paris; Nakorn Premsri; Chawetsan Namwat; Mark S. de Souza; Elizabeth Adams; Michael Benenson; Sanjay Gurunathan; Jim Tartaglia; John G. McNeil; Donald P. Francis; Donald Stablein; Deborah L. Birx; Supamit Chunsuttiwat; Chirasak Khamboonruang; Thongcharoen P; Merlin L. Robb; Nelson L. Michael; Prayura Kunasol; Jerome H. Kim
BACKGROUNDnThe development of a safe and effective vaccine against the human immunodeficiency virus type 1 (HIV-1) is critical to pandemic control.nnnMETHODSnIn a community-based, randomized, multicenter, double-blind, placebo-controlled efficacy trial, we evaluated four priming injections of a recombinant canarypox vector vaccine (ALVAC-HIV [vCP1521]) plus two booster injections of a recombinant glycoprotein 120 subunit vaccine (AIDSVAX B/E). The vaccine and placebo injections were administered to 16,402 healthy men and women between the ages of 18 and 30 years in Rayong and Chon Buri provinces in Thailand. The volunteers, primarily at heterosexual risk for HIV infection, were monitored for the coprimary end points: HIV-1 infection and early HIV-1 viremia, at the end of the 6-month vaccination series and every 6 months thereafter for 3 years.nnnRESULTSnIn the intention-to-treat analysis involving 16,402 subjects, there was a trend toward the prevention of HIV-1 infection among the vaccine recipients, with a vaccine efficacy of 26.4% (95% confidence interval [CI], -4.0 to 47.9; P=0.08). In the per-protocol analysis involving 12,542 subjects, the vaccine efficacy was 26.2% (95% CI, -13.3 to 51.9; P=0.16). In the modified intention-to-treat analysis involving 16,395 subjects (with the exclusion of 7 subjects who were found to have had HIV-1 infection at baseline), the vaccine efficacy was 31.2% (95% CI, 1.1 to 52.1; P=0.04). Vaccination did not affect the degree of viremia or the CD4+ T-cell count in subjects in whom HIV-1 infection was subsequently diagnosed.nnnCONCLUSIONSnThis ALVAC-HIV and AIDSVAX B/E vaccine regimen may reduce the risk of HIV infection in a community-based population with largely heterosexual risk. Vaccination did not affect the viral load or CD4+ count in subjects with HIV infection. Although the results show only a modest benefit, they offer insight for future research. (ClinicalTrials.gov number, NCT00223080.)
Journal of Experimental Medicine | 2008
Denis Gaucher; René Therrien; Nadia Kettaf; Bastian R. Angermann; Geneviève Boucher; Abdelali Filali-Mouhim; Janice M. Moser; Riyaz Mehta; Donald R. Drake; Erika Castro; Rama Akondy; Aline Rinfret; Bader Yassine-Diab; Elias A. Said; Younes Chouikh; Mark J. Cameron; Robert Clum; David J. Kelvin; Roland Somogyi; Robert S. Balderas; Peter Wilkinson; Giuseppe Pantaleo; Jim Tartaglia; Elias K. Haddad; Rafick Pierre Sekaly
Correlates of immune-mediated protection to most viral and cancer vaccines are still unknown. This impedes the development of novel vaccines to incurable diseases such as HIV and cancer. In this study, we have used functional genomics and polychromatic flow cytometry to define the signature of the immune response to the yellow fever (YF) vaccine 17D (YF17D) in a cohort of 40 volunteers followed for up to 1 yr after vaccination. We show that immunization with YF17D leads to an integrated immune response that includes several effector arms of innate immunity, including complement, the inflammasome, and interferons, as well as adaptive immunity as shown by an early T cell response followed by a brisk and variable B cell response. Development of these responses is preceded, as demonstrated in three independent vaccination trials and in a novel in vitro system of primary immune responses (modular immune in vitro construct [MIMIC] system), by the coordinated up-regulation of transcripts for specific transcription factors, including STAT1, IRF7, and ETS2, which are upstream of the different effector arms of the immune response. These results clearly show that the immune response to a strong vaccine is preceded by coordinated induction of master transcription factors that lead to the development of a broad, polyfunctional, and persistent immune response that integrates all effector cells of the immune system.
Journal of Virology | 2002
Ranajit Pal; David Venzon; Norman L. Letvin; Sampa Santra; David C. Montefiori; N. R. Miller; Elzbieta Tryniszewska; Mark G. Lewis; Thomas C. VanCott; Vanessa M. Hirsch; Ruth Woodward; A. Gibson; M. Grace; E. Dobratz; Phillip D. Markham; Zdeněk Hel; Janos Nacsa; Michèl R. Klein; Jim Tartaglia; Genoveffa Franchini
ABSTRACT T-cell-mediated immune effector mechanisms play an important role in the containment of human immunodeficiency virus/simian immunodeficiency virus (HIV/SIV) replication after infection. Both vaccination- and infection-induced T-cell responses are dependent on the host major histocompatibility complex classes I and II (MHC-I and MHC-II) antigens. Here we report that both inherent, host-dependent immune responses to SIVmac251 infection and vaccination-induced immune responses to viral antigens were able to reduce virus replication and/or CD4+ T-cell loss. Both the presence of the MHC-I Mamu-A*01 genotype and vaccination of rhesus macaques with ALVAC-SIV-gag-pol-env (ALVAC-SIV-gpe) contributed to the restriction of SIVmac251 replication during primary infection, preservation of CD4+ T cells, and delayed disease progression following intrarectal challenge exposure of the animals to SIVmac251 (561). ALVAC-SIV-gpe immunization induced cytotoxic T-lymphocyte (CTL) responses cumulatively in 67% of the immunized animals. Following viral challenge, a significant secondary virus-specific CD8+ T-cell response was observed in the vaccinated macaques. In the same immunized macaques, a decrease in virus load during primary infection (P = 0.0078) and protection from CD4 loss during both acute and chronic phases of infection (P = 0.0099 and P = 0.03, respectively) were observed. A trend for enhanced survival of the vaccinated macaques was also observed. Neither boosting the ALVAC-SIV-gpe with gp120 immunizations nor administering the vaccine by the combination of mucosal and systemic immunization routes increased significantly the protective effect of the ALVAC-SIV-gpe vaccine. While assessing the role of MHC-I Mamu-A*01 alone in the restriction of viremia following challenge of nonvaccinated animals with other SIV isolates, we observed that the virus load was not significantly lower in Mamu-A*01-positive macaques following intravenous challenge with either SIVmac251 (561) or SIVSME660. However, a significant delay in CD4+ T-cell loss was observed in Mamu-A*01-positive macaques in each group. Of interest, in the case of intravenous or intrarectal challenge with the chimeric SIV/HIV strains SHIV89.6P or SHIVKU2, respectively, MHC-I Mamu-A*01-positive macaques did not significantly restrict primary viremia. The finding of the protective effect of the Mamu-A*01 molecule parallels the protective effect of the B*5701 HLA allele in HIV-1-infected humans and needs to be accounted for in the evaluation of vaccine efficacy against SIV challenge models.
The Journal of Infectious Diseases | 2012
David C. Montefiori; Chitraporn Karnasuta; Ying Huang; Hasan Ahmed; Peter B. Gilbert; Mark S. de Souza; Robert McLinden; Sodsai Tovanabutra; Agnes Laurence-Chenine; Eric Sanders-Buell; M. Anthony Moody; Mattia Bonsignori; Christina Ochsenbauer; John C. Kappes; Haili Tang; Kelli M. Greene; Hongmei Gao; Celia C. LaBranche; Charla Andrews; Victoria R. Polonis; Supachai Rerks-Ngarm; Punnee Pitisuttithum; Sorachai Nitayaphan; Jaranit Kaewkungwal; Steve Self; Phillip W. Berman; Donald P. Francis; Faruk Sinangil; Carter Lee; Jim Tartaglia
Background.u2003A recombinant canarypox vector expressing human immunodeficiency virus type 1 (HIV-1) Gag, Pro, and membrane-linked gp120 (vCP1521), combined with a bivalent gp120 protein boost (AIDSVAX B/E), provided modest protection against HIV-1 infection in a community-based population in Thailand (RV144 trial). No protection was observed in Thai injection drug users who received AIDSVAX B/E alone (Vax003 trial). We compared the neutralizing antibody response in these 2 trials. Methods.u2003Neutralization was assessed with tier 1 and tier 2 strains of virus in TZM-bl and A3R5 cells. Results.u2003Neutralization of several tier 1 viruses was detected in both RV144 and Vax003. Peak titers were higher in Vax003 and waned rapidly in both trials. The response in RV144 was targeted in part to V3 of gp120.vCP1521 priming plus 2 boosts with gp120 protein was superior to 2 gp120 protein inoculations alone, confirming a priming effect for vCP1521. Sporadic weak neutralization of tier 2 viruses was detected only in Vax003 and A3R5 cells. Conclusion.u2003The results suggest either that weak neutralizing antibody responses can be partially protective against HIV-1 in low-risk heterosexual populations or that the modest efficacy seen in RV144 was mediated by other immune responses, either alone or in combination with neutralizing antibodies.
Journal of Clinical Oncology | 2005
Nicolas van Baren; Marie-Claude Bonnet; Brigitte Dreno; Amir Khammari; T. Dorval; Sophie Piperno-Neumann; Danielle Liénard; Daniel E. Speiser; Marie Marchand; Vincent Brichard; Bernard Escudier; Sylvie Négrier; Pierre-Yves Dietrich; Dominique Maraninchi; Susanne Osanto; Ralf G. Meyer; Gerd Ritter; Philippe Moingeon; Jim Tartaglia; Pierre van der Bruggen; Pierre G. Coulie; Thierry Boon
PURPOSEnTo evaluate the toxicity, antitumoral effectiveness, and immunogenicity of repeated vaccinations with ALVAC miniMAGE-1/3, a recombinant canarypox virus containing a minigene encoding antigenic peptides MAGE-3(168-176) and MAGE-1(161-169), which are presented by HLA-A1 and B35 on tumor cells and can be recognized by cytolytic T lymphocytes (CTLs).nnnMATERIALS AND METHODSnThe vaccination schedule comprised four sequential injections of the recombinant virus, followed by three booster vaccinations with the MAGE-3(168-176) and MAGE-1(161-169) peptides. The vaccines were administered, both intradermally and subcutaneously, at 3-week intervals.nnnRESULTSnForty patients with advanced cancer were treated, including 37 melanoma patients. The vaccines were generally well tolerated with moderate adverse events, consisting mainly of transient inflammatory reactions at the virus injection sites. Among the 30 melanoma patients assessable for tumor response, a partial response was observed in one patient, and disease stabilization in two others. The remaining patients had progressive disease. Among the patients with stable or progressive disease, five showed evidence of tumor regression. A CTL response against the MAGE-3 vaccine antigen was detected in three of four patients with tumor regression, and in only one of 11 patients without regression.nnnCONCLUSIONnRepeated vaccination with ALVAC miniMAGE-1/3 is associated with tumor regression and with a detectable CTL response in a minority of melanoma patients. There is a significant correlation between tumor regression and CTL response. The contribution of vaccine-induced CTL in the tumor regression process is discussed in view of the immunologic events that could be analyzed in detail in one patient.
AIDS Research and Human Retroviruses | 2012
Nicos Karasavvas; Erik Billings; Mangala Rao; Constance Williams; Susan Zolla-Pazner; Robert T. Bailer; Richard A. Koup; Sirinan Madnote; Duangnapa Arworn; Xiaoying Shen; Georgia D. Tomaras; Jeffrey R. Currier; Mike Jiang; Craig A. Magaret; Charla Andrews; Raphael Gottardo; Peter B. Gilbert; Timothy Cardozo; Supachai Rerks-Ngarm; Sorachai Nitayaphan; Punnee Pitisuttithum; Jaranit Kaewkungwal; Robert Paris; Kelli M. Greene; Hongmei Gao; Sanjay Gurunathan; Jim Tartaglia; Faruk Sinangil; Bette T. Korber; David C. Montefiori
The Thai Phase III clinical trial (RV144) showed modest efficacy in preventing HIV-1 acquisition. Plasma collected from HIV-1-uninfected trial participants completing all injections with ALVAC-HIV (vCP1521) prime and AIDSVAX B/E boost were tested for antibody responses against HIV-1 gp120 envelope (Env). Peptide microarray analysis from six HIV-1 subtypes and group M consensus showed that vaccination induced antibody responses to the second variable (V2) loop of gp120 of multiple subtypes. We further evaluated V2 responses by ELISA and surface plasmon resonance using cyclic (Cyc) and linear V2 loop peptides. Thirty-one of 32 vaccine recipients tested (97%) had antibody responses against Cyc V2 at 2 weeks postimmunization with a reciprocal geometric mean titer (GMT) of 1100 (range: 200-3200). The frequency of detecting plasma V2 antibodies declined to 19% at 28 weeks post-last injection (GMT: 110, range: 100-200). Antibody responses targeted the mid-region of the V2 loop that contains conserved epitopes and has the amino acid sequence KQKVHALFYKLDIVPI (HXB2 Numbering sequence 169-184). Valine at position 172 was critical for antibody binding. The frequency of V3 responses at 2 weeks postimmunization was modest (18/32, 56%) with a GMT of 185 (range: 100-800). In contrast, naturally infected HIV-1 individuals had a lower frequency of antibody responses to V2 (10/20, 50%; p=0.003) and a higher frequency of responses to V3 (19/20, 95%), with GMTs of 400 (range: 100-3200) and 3570 (range: 200-12,800), respectively. RV144 vaccination induced antibodies that targeted a region of the V2 loop that contains conserved epitopes. Early HIV-1 transmission events involve V2 loop interactions, raising the possibility that anti-V2 antibodies in RV144 may have contributed to viral inhibition.
Lancet Infectious Diseases | 2012
Merlin L. Robb; Supachai Rerks-Ngarm; Sorachai Nitayaphan; Punnee Pitisuttithum; Jaranit Kaewkungwal; Prayura Kunasol; Chirasak Khamboonruang; Thongcharoen P; Patricia Morgan; Michael Benenson; Robert Paris; Joseph Chiu; Elizabeth Adams; Donald P. Francis; Sanjay Gurunathan; Jim Tartaglia; Peter B. Gilbert; Don Stablein; Nelson L. Michael; Jerome H. Kim
BACKGROUNDnThe Thai phase 3 HIV vaccine trial RV 144 showed modest efficacy of a vaccine against HIV acquisition. Baseline variables of age, sex, marital status, and risk did not modify vaccine efficacy. We did a post-hoc analysis of the trials data to investigate behavioural risk and efficacy every 6 months after vaccination.nnnMETHODSnRV 144 was a randomised, multicentre, double-blind, placebo-controlled efficacy trial testing the combination of the HIV vaccines ALVAC-HIV (vCP1521) and AIDSVAX B/E to prevent HIV infection or reduce setpoint viral load. Male and female volunteers aged 18-30 years were recruited from the community. In this post-hoc analysis of the modified intention-to-treat population (16,395 participants), HIV risk behaviour was assessed with a self-administered questionnaire at the time of initial vaccination in the trial and every 6 months thereafter for 3 years. We classified participants behaviour as low, medium, or high risk. Both the acquisition endpoint and the early viral-load endpoint were examined for interactions with risk status over time and temporal effects after vaccination. Multiple proportional hazards regression models with treatment and time-varying risk covariates were analysed.nnnFINDINGSnRisk of acquisition of HIV was low in each risk group, but 9187 (58·2%) participants reported higher-risk behaviour at least once during the study. Participants classified as high or increasing risk at least once during follow-up were compared with those who maintained low-risk or medium-risk behaviour as a time-varying covariate, and the interaction of risk status and acquisition efficacy was significant (p=0·01), with greater benefit in low-risk individuals. Vaccine efficacy seemed to peak early--cumulative vaccine efficacy was estimated to be 60·5% (95% CI 22-80) through the 12 months after initial vaccination--and declined quickly. Vaccination did not seem to affect viral load in either early or late infections.nnnINTERPRETATIONnFuture HIV vaccine trials should recognise potential interactions between challenge intensity and risk heterogeneity in both population and treatment effects. The regimen tested in the RV 144 phase 3 trial might benefit from extended immunisation schedules.nnnFUNDINGnUS Army Medical Research and Materiel Command and Division of AIDS, National Institute of Allergy and Infectious Disease, National Institutes of Health.Background nThe Thai phase III HIV vaccine trials modest efficacy (VE 31.2% 95% CI 1.1, 51.2) represents the first demonstration that a vaccine can protect against HIV acquisition. Baseline variables of age, gender, marital status, and risk did not modify vaccine efficacy (VE). Here we explore behavioral risk and efficacy at 6 monthly intervals following vaccination.
Vaccine | 2008
Sheena McCormack; Wolfgang Stöhr; Tristan Barber; Pierre-Alexandre Bart; Alexandre Harari; Christiane Moog; Donatella Ciuffreda; Cristina Cellerai; Miranda Cowen; Romilda Gamboni; Séverine Burnet; Ken Legg; Elizabeth Brodnicki; Hans Wolf; Ralf Wagner; Jonathan L. Heeney; Marie-Joelle Frachette; Jim Tartaglia; Abdel Babiker; Giuseppe Pantaleo; Jonathan Weber
The aim of this randomised controlled trial was to see if the addition of 4 mg/ml DNA-C priming given by the intramuscular route at weeks 0 and 4 to NYVAC-C at weeks 20 and 24, safely increased the proportion of participants with HIV-specific T-cell responses measured by the interferon (IFN)-gamma ELISpot assay at weeks 26 and/or 28 compared to NYVAC-C alone. Although 2 individuals discontinued after the first DNA-C due to adverse events (1 vaso-vagal; 1 transient, asymptomatic elevation in alanine transaminase), the vaccines were well tolerated. Three others failed to complete the regimen (1 changed her mind; 2 lost to follow-up). Of the 35 that completed the regimen 90% (18/20) in the DNA-C group had ELISpot responses compared to 33% (5/15) that received NYVAC-C alone (p=0.001). Responses were to envelope in the majority (21/23). Of the 9 individuals with responses to envelope and other peptides, 8 were in the DNA-C group. These promising results suggest that DNA-C was an effective priming agent, that merits further investigation.
Expert Review of Vaccines | 2004
Genoveffa Franchini; Sanjay Gurunathan; Lynn Baglyos; Stanley A. Plotkin; Jim Tartaglia
Poxvirus vectors have emerged as important vectors for licensed veterinary vaccines and candidate vaccines for humans. Vaccinia, highly-attenuated vaccinia strains and avipoxviruses have been assessed extensively in preclinical models, as well as in humans, to determine their immunogenicity and protective efficacy against HIV. The attenuated vaccinia strains and avipoxviruses have been shown to be safe and able to carry HIV genes and express their proteins to induce both antibodies and cellular immune responses. Preclinical studies show protection against HIV challenge. When using a live attenuated vector system, one must be cognizant of the potential for immune dampening because of vector-specific immunity. In this regard, avipoxviruses, such as canarypox, appear free of the inhibitory effects of vector immunity and repeated use. Unlike vaccinia-based vectors derived from classical vaccine strains, NYVAC and modified vaccinia Ankara may be less susceptible to this effect. In the coming 5 to 10 years, we will certainly know whether this class of vaccine candidates, either alone or in a prime–boost format with other vectors or proteins, will contribute to HIV disease management either from a preventive or therapeutic perspective. Additional Phase I and II studies, as well as human efficacy trials will provide new information. Furthermore, it is hoped that this body of data will contribute to a better understanding of the relevance of specific immunogenicity end points to protection and the predictive value of available animal models in HIV vaccine development.
Immunology Letters | 2000
Marie-Claude Bonnet; Jim Tartaglia; F Verdier; Philippe Kourilsky; A Lindberg; Michel H. Klein; Philippe Moingeon
Viral vectors can be used to express a variety of genes in vivo, that encode tumor associated antigens, cytokines, or accessory molecules. For vaccination purposes, the ideal viral vector should be safe and enable efficient presentation of expressed antigens to the immune system. It should also exhibit low intrinsic immunogenicity to allow for its re-administration in order to boost relevant specific immune responses. Furthermore, the vector system must meet criteria that enable its industrialization. The characteristics of the most promising viral vectors, including retroviruses, poxviruses, adenoviruses, adeno-associated viruses, herpes simplex viruses, and alphaviruses, will be reviewed in this communication. Such recombinant viruses have been successfully used in animal models as therapeutic cancer vaccines. Based on these encouraging results, a series of clinical studies, reviewed herein, have been undertaken. Human clinical trials, have as of today, allowed investigators to establish that recombinant viruses can be safely used in cancer patients, and that such recombinants can break immune tolerance against tumor-associated antigens. These promising results are now leading to improved immunization protocols associating recombinant viruses with alternate antigen-presentation platforms (prime-boost regimens), in order to elicit broad tumor-specific immune responses (humoral and cellular) against multiple target antigens.