Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sorachai Nitayaphan is active.

Publication


Featured researches published by Sorachai Nitayaphan.


The New England Journal of Medicine | 2009

Vaccination with ALVAC and AIDSVAX to Prevent HIV-1 Infection in Thailand

Supachai Rerks-Ngarm; Punnee Pitisuttithum; Sorachai Nitayaphan; Jaranit Kaewkungwal; Joseph Chiu; Robert Paris; Nakorn Premsri; Chawetsan Namwat; Mark S. de Souza; Elizabeth Adams; Michael Benenson; Sanjay Gurunathan; Jim Tartaglia; John G. McNeil; Donald P. Francis; Donald Stablein; Deborah L. Birx; Supamit Chunsuttiwat; Chirasak Khamboonruang; Thongcharoen P; Merlin L. Robb; Nelson L. Michael; Prayura Kunasol; Jerome H. Kim

BACKGROUND The development of a safe and effective vaccine against the human immunodeficiency virus type 1 (HIV-1) is critical to pandemic control. METHODS In a community-based, randomized, multicenter, double-blind, placebo-controlled efficacy trial, we evaluated four priming injections of a recombinant canarypox vector vaccine (ALVAC-HIV [vCP1521]) plus two booster injections of a recombinant glycoprotein 120 subunit vaccine (AIDSVAX B/E). The vaccine and placebo injections were administered to 16,402 healthy men and women between the ages of 18 and 30 years in Rayong and Chon Buri provinces in Thailand. The volunteers, primarily at heterosexual risk for HIV infection, were monitored for the coprimary end points: HIV-1 infection and early HIV-1 viremia, at the end of the 6-month vaccination series and every 6 months thereafter for 3 years. RESULTS In the intention-to-treat analysis involving 16,402 subjects, there was a trend toward the prevention of HIV-1 infection among the vaccine recipients, with a vaccine efficacy of 26.4% (95% confidence interval [CI], -4.0 to 47.9; P=0.08). In the per-protocol analysis involving 12,542 subjects, the vaccine efficacy was 26.2% (95% CI, -13.3 to 51.9; P=0.16). In the modified intention-to-treat analysis involving 16,395 subjects (with the exclusion of 7 subjects who were found to have had HIV-1 infection at baseline), the vaccine efficacy was 31.2% (95% CI, 1.1 to 52.1; P=0.04). Vaccination did not affect the degree of viremia or the CD4+ T-cell count in subjects in whom HIV-1 infection was subsequently diagnosed. CONCLUSIONS This ALVAC-HIV and AIDSVAX B/E vaccine regimen may reduce the risk of HIV infection in a community-based population with largely heterosexual risk. Vaccination did not affect the viral load or CD4+ count in subjects with HIV infection. Although the results show only a modest benefit, they offer insight for future research. (ClinicalTrials.gov number, NCT00223080.)


The New England Journal of Medicine | 2012

Immune-Correlates Analysis of an HIV-1 Vaccine Efficacy Trial

Barton F. Haynes; Peter B. Gilbert; M. Juliana McElrath; Susan Zolla-Pazner; Georgia D. Tomaras; S. Munir Alam; David T. Evans; David C. Montefiori; Chitraporn Karnasuta; Ruengpueng Sutthent; Hua-Xin Liao; Anthony L. DeVico; George K. Lewis; Constance Williams; Abraham Pinter; Youyi Fong; Holly Janes; Allan C. deCamp; Yunda Huang; Mangala Rao; Erik Billings; Nicos Karasavvas; Merlin L. Robb; Viseth Ngauy; Mark S. de Souza; Robert Paris; Guido Ferrari; Robert T. Bailer; Kelly A. Soderberg; Charla Andrews

BACKGROUND In the RV144 trial, the estimated efficacy of a vaccine regimen against human immunodeficiency virus type 1 (HIV-1) was 31.2%. We performed a case-control analysis to identify antibody and cellular immune correlates of infection risk. METHODS In pilot studies conducted with RV144 blood samples, 17 antibody or cellular assays met prespecified criteria, of which 6 were chosen for primary analysis to determine the roles of T-cell, IgG antibody, and IgA antibody responses in the modulation of infection risk. Assays were performed on samples from 41 vaccinees who became infected and 205 uninfected vaccinees, obtained 2 weeks after final immunization, to evaluate whether immune-response variables predicted HIV-1 infection through 42 months of follow-up. RESULTS Of six primary variables, two correlated significantly with infection risk: the binding of IgG antibodies to variable regions 1 and 2 (V1V2) of HIV-1 envelope proteins (Env) correlated inversely with the rate of HIV-1 infection (estimated odds ratio, 0.57 per 1-SD increase; P=0.02; q=0.08), and the binding of plasma IgA antibodies to Env correlated directly with the rate of infection (estimated odds ratio, 1.54 per 1-SD increase; P=0.03; q=0.08). Neither low levels of V1V2 antibodies nor high levels of Env-specific IgA antibodies were associated with higher rates of infection than were found in the placebo group. Secondary analyses suggested that Env-specific IgA antibodies may mitigate the effects of potentially protective antibodies. CONCLUSIONS This immune-correlates study generated the hypotheses that V1V2 antibodies may have contributed to protection against HIV-1 infection, whereas high levels of Env-specific IgA antibodies may have mitigated the effects of protective antibodies. Vaccines that are designed to induce higher levels of V1V2 antibodies and lower levels of Env-specific IgA antibodies than are induced by the RV144 vaccine may have improved efficacy against HIV-1 infection.


Nature | 2012

Increased HIV-1 vaccine efficacy against viruses with genetic signatures in Env V2

Morgane Rolland; Paul T. Edlefsen; Brendan B. Larsen; Sodsai Tovanabutra; Eric Sanders-Buell; Tomer Hertz; Allan C. deCamp; Chris Carrico; Sergey Menis; Craig A. Magaret; Hasan Ahmed; Michal Juraska; Lennie Chen; Philip Konopa; Snehal Nariya; Julia N. Stoddard; Kim Wong; Haishuang Zhao; Wenjie Deng; Brandon Maust; Meera Bose; Shana Howell; A Bates; Michelle Lazzaro; Annemarie O'Sullivan; Esther Lei; Andrea Bradfield; Grace Ibitamuno; Vatcharain Assawadarachai; Robert J. O'Connell

The RV144 trial demonstrated 31% vaccine efficacy at preventing human immunodeficiency virus (HIV)-1 infection. Antibodies against the HIV-1 envelope variable loops 1 and 2 (Env V1 and V2) correlated inversely with infection risk. We proposed that vaccine-induced immune responses against V1/V2 would have a selective effect against, or sieve, HIV-1 breakthrough viruses. A total of 936 HIV-1 genome sequences from 44 vaccine and 66 placebo recipients were examined. We show that vaccine-induced immune responses were associated with two signatures in V2 at amino acid positions 169 and 181. Vaccine efficacy against viruses matching the vaccine at position 169 was 48% (confidence interval 18% to 66%; P = 0.0036), whereas vaccine efficacy against viruses mismatching the vaccine at position 181 was 78% (confidence interval 35% to 93%; P = 0.0028). Residue 169 is in a cationic glycosylated region recognized by broadly neutralizing and RV144-derived antibodies. The predicted distance between the two signature sites (21 ± 7 Å) and their match/mismatch dichotomy indicate that multiple factors may be involved in the protection observed in RV144. Genetic signatures of RV144 vaccination in V2 complement the finding of an association between high V1/V2-binding antibodies and reduced risk of HIV-1 acquisition, and provide evidence that vaccine-induced V2 responses plausibly had a role in the partial protection conferred by the RV144 regimen.


Journal of Virology | 2012

Antibody-Dependent Cellular Cytotoxicity-Mediating Antibodies from an HIV-1 Vaccine Efficacy Trial Target Multiple Epitopes and Preferentially Use the VH1 Gene Family

Mattia Bonsignori; Justin Pollara; M. Anthony Moody; Michael D. Alpert; Xi Chen; Kwan-Ki Hwang; Peter B. Gilbert; Ying Huang; Thaddeus C. Gurley; Daniel M. Kozink; Dawn J. Marshall; John F. Whitesides; Chun-Yen Tsao; Jaranit Kaewkungwal; Sorachai Nitayaphan; Punnee Pitisuttithum; Supachai Rerks-Ngarm; Jerome H. Kim; Nelson L. Michael; Georgia D. Tomaras; David C. Montefiori; George K. Lewis; Anthony L. DeVico; David T. Evans; Guido Ferrari; Hua-Xin Liao; Barton F. Haynes

ABSTRACT The ALVAC-HIV/AIDSVAX-B/E RV144 vaccine trial showed an estimated efficacy of 31%. RV144 secondary immune correlate analysis demonstrated that the combination of low plasma anti-HIV-1 Env IgA antibodies and high levels of antibody-dependent cellular cytotoxicity (ADCC) inversely correlate with infection risk. One hypothesis is that the observed protection in RV144 is partially due to ADCC-mediating antibodies. We found that the majority (73 to 90%) of a representative group of vaccinees displayed plasma ADCC activity, usually (96.2%) blocked by competition with the C1 region-specific A32 Fab fragment. Using memory B-cell cultures and antigen-specific B-cell sorting, we isolated 23 ADCC-mediating nonclonally related antibodies from 6 vaccine recipients. These antibodies targeted A32-blockable conformational epitopes (n = 19), a non-A32-blockable conformational epitope (n = 1), and the gp120 Env variable loops (n = 3). Fourteen antibodies mediated cross-clade target cell killing. ADCC-mediating antibodies displayed modest levels of V-heavy (VH) chain somatic mutation (0.5 to 1.5%) and also displayed a disproportionate usage of VH1 family genes (74%), a phenomenon recently described for CD4-binding site broadly neutralizing antibodies (bNAbs). Maximal ADCC activity of VH1 antibodies correlated with mutation frequency. The polyclonality and low mutation frequency of these VH1 antibodies reveal fundamental differences in the regulation and maturation of these ADCC-mediating responses compared to VH1 bNAbs.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Vaccine-induced plasma IgA specific for the C1 region of the HIV-1 envelope blocks binding and effector function of IgG

Georgia D. Tomaras; Guido Ferrari; Xiaoying Shen; S. Munir Alam; Hua-Xin Liao; Justin Pollara; Mattia Bonsignori; M. Anthony Moody; Youyi Fong; Xi Chen; Brigid Poling; Cindo O. Nicholson; Ruijun Zhang; Xiaozhi Lu; Robert Parks; Jaranit Kaewkungwal; Sorachai Nitayaphan; Punnee Pitisuttithum; Supachai Rerks-Ngarm; Peter B. Gilbert; Jerome H. Kim; Nelson L. Michael; David C. Montefiori; Barton F. Haynes

Analysis of correlates of risk of infection in the RV144 HIV-1 vaccine efficacy trial demonstrated that plasma IgG against the HIV-1 envelope (Env) variable region 1 and 2 inversely correlated with risk, whereas HIV-1 Env-specific plasma IgA responses directly correlated with risk. In the secondary analysis, antibody-dependent cellular cytotoxicity (ADCC) was another inverse correlate of risk, but only in the presence of low plasma IgA Env-specific antibodies. Thus, we investigated the hypothesis that IgA could attenuate the protective effect of IgG responses through competition for the same Env binding sites. We report that Env-specific plasma IgA/IgG ratios are higher in infected than in uninfected vaccine recipients in RV144. Moreover, Env-specific IgA antibodies from RV144 vaccinees blocked the binding of ADCC-mediating mAb to HIV-1 Env glycoprotein 120 (gp120). An Env-specific monomeric IgA mAb isolated from an RV144 vaccinee also inhibited the ability of natural killer cells to kill HIV-1–infected CD4+ T cells coated with RV144-induced IgG antibodies. We show that monomeric Env-specific IgA, as part of postvaccination polyclonal antibody response, may modulate vaccine-induced immunity by diminishing ADCC effector function.


Science Translational Medicine | 2014

Vaccine-Induced Env V1–V2 IgG3 Correlates with Lower HIV-1 Infection Risk and Declines Soon After Vaccination

Nicole L. Yates; Hua-Xin Liao; Youyi Fong; Allan C. deCamp; Nathan Vandergrift; William T. Williams; S. Munir Alam; Guido Ferrari; Zhi-Yong Yang; Kelly E. Seaton; Phillip W. Berman; Michael D. Alpert; David T. Evans; Robert J. O’Connell; Donald P. Francis; Faruk Sinangil; Carter Lee; Sorachai Nitayaphan; Supachai Rerks-Ngarm; Jaranit Kaewkungwal; Punnee Pitisuttithum; James Tartaglia; Abraham Pinter; Susan Zolla-Pazner; Peter B. Gilbert; Gary J. Nabel; Nelson L. Michael; Jerome H. Kim; David C. Montefiori; Barton F. Haynes

A V1-V2 IgG3 response to HIV correlates with a decreased risk of HIV-1 infection and is one vaccine-induced humoral response that is higher in a clinical trial showing HIV-1 vaccine efficacy compared to a trial showing nonefficacy. Env IgG3 Takes Center Stage Only one HIV-1 vaccine trial (RV144), to date, has demonstrated some level of vaccine efficacy. IgG antibodies to the V1-V2 region of the HIV-1 envelope correlated with decreased HIV-1 risk. However, a previous vaccine trial (VAX003) also induced these types of antibodies but failed to demonstrate efficacy, thus raising the question about whether the quality of the V1-V2 IgG response and the context of other immune responses were important. Yates et al. report that these two trials did induce a qualitatively distinct antibody subclass response, with more V1V2 IgG3 responses and correlations with antiviral function induced by the partially efficacious RV144 vaccine regimen compared to the VAX003 vaccine regimen that lacks efficacy. The authors then demonstrated that these specific IgG3 antibodies correlated with a decreased risk of infection in a placebo-controlled, blinded study of RV144 vaccinees with and without subsequent HIV-1 infection. Vaccine-induced HIV-1 antibody subclass profiles, specifically Env IgG3, should be evaluated in future HIV-1 vaccine efficacy trials to further refine immune correlates of protection. HIV-1–specific immunoglobulin G (IgG) subclass antibodies bind to distinct cellular Fc receptors. Antibodies of the same epitope specificity but of a different subclass therefore can have different antibody effector functions. The study of IgG subclass profiles between different vaccine regimens used in clinical trials with divergent efficacy outcomes can provide information on the quality of the vaccine-induced B cell response. We show that HIV-1–specific IgG3 distinguished two HIV-1 vaccine efficacy studies (RV144 and VAX003 clinical trials) and correlated with decreased risk of HIV-1 infection in a blinded follow-up case-control study with the RV144 vaccine. HIV-1–specific IgG3 responses were not long-lived, which was consistent with the waning efficacy of the RV144 vaccine. These data suggest that specific vaccine-induced HIV-1 IgG3 should be tested in future studies of immune correlates in HIV-1 vaccine efficacy trials.


The Journal of Infectious Diseases | 2012

Magnitude and Breadth of the Neutralizing Antibody Response in the RV144 and Vax003 HIV-1 Vaccine Efficacy Trials

David C. Montefiori; Chitraporn Karnasuta; Ying Huang; Hasan Ahmed; Peter B. Gilbert; Mark S. de Souza; Robert McLinden; Sodsai Tovanabutra; Agnes Laurence-Chenine; Eric Sanders-Buell; M. Anthony Moody; Mattia Bonsignori; Christina Ochsenbauer; John C. Kappes; Haili Tang; Kelli M. Greene; Hongmei Gao; Celia C. LaBranche; Charla Andrews; Victoria R. Polonis; Supachai Rerks-Ngarm; Punnee Pitisuttithum; Sorachai Nitayaphan; Jaranit Kaewkungwal; Steve Self; Phillip W. Berman; Donald P. Francis; Faruk Sinangil; Carter Lee; Jim Tartaglia

Background. A recombinant canarypox vector expressing human immunodeficiency virus type 1 (HIV-1) Gag, Pro, and membrane-linked gp120 (vCP1521), combined with a bivalent gp120 protein boost (AIDSVAX B/E), provided modest protection against HIV-1 infection in a community-based population in Thailand (RV144 trial). No protection was observed in Thai injection drug users who received AIDSVAX B/E alone (Vax003 trial). We compared the neutralizing antibody response in these 2 trials. Methods. Neutralization was assessed with tier 1 and tier 2 strains of virus in TZM-bl and A3R5 cells. Results. Neutralization of several tier 1 viruses was detected in both RV144 and Vax003. Peak titers were higher in Vax003 and waned rapidly in both trials. The response in RV144 was targeted in part to V3 of gp120.vCP1521 priming plus 2 boosts with gp120 protein was superior to 2 gp120 protein inoculations alone, confirming a priming effect for vCP1521. Sporadic weak neutralization of tier 2 viruses was detected only in Vax003 and A3R5 cells. Conclusion. The results suggest either that weak neutralizing antibody responses can be partially protective against HIV-1 in low-risk heterosexual populations or that the modest efficacy seen in RV144 was mediated by other immune responses, either alone or in combination with neutralizing antibodies.


Science Translational Medicine | 2014

Polyfunctional Fc-Effector Profiles Mediated by IgG Subclass Selection Distinguish RV144 and VAX003 Vaccines

Amy W. Chung; Musie Ghebremichael; Hannah Robinson; Eric P. Brown; Ickwon Choi; Sophie Lane; Anne-Sophie Dugast; Matthew K. Schoen; Morgane Rolland; Todd J. Suscovich; Alison E. Mahan; Larry Liao; Hendrik Streeck; Charla Andrews; Supachai Rerks-Ngarm; Sorachai Nitayaphan; Mark S. de Souza; Jaranit Kaewkungwal; Punnee Pitisuttithum; Donald P. Francis; Nelson L. Michael; Jerome H. Kim; Chris Bailey-Kellogg; Margaret E. Ackerman; Galit Alter

RV144 vaccination induced polyfunctional antibody Fc-effector responses, whereas VAX003 vaccination increased inhibitory IgG4 antibodies. More Is Better for Protection Against HIV Recently, results from the first protective HIV phase 2B RV144 vaccine trial pointed to an unexpected signature of protection, not associated with the traditional mechanisms of vaccine-induced immunity, namely, neutralizing antibodies and killer T cell immunity. Instead, protection was associated with specific subpopulations of antibodies that were able to direct killing of HIV-infected cells. However, little is known about the properties of these killer antibodies or their biophysical features. In a new study, Chung et al. functionally profiled antibodies raised by the protective RV144 vaccine trial and its nonprotective predecessor, the VAX003 vaccine trial, both conducted in Thailand. RV144 vaccination uniquely induced antibodies capable of directing several different antiviral functions in a coordinated manner. In contrast, VAX003 vaccination predominantly induced single or uncoordinated antiviral responses. Functional coordination was regulated by the selection of antibody responses directed at vulnerable regions on the HIV envelope that were specifically tuned to enhanced functionality through the selection of a specific antibody subclass, IgG3, known to harbor strong antiviral activity. Collectively, these data suggest that vaccines able to induce broader antibody functional profiles, through the selection of more potent antibody subclasses, which target vulnerable regions of the virus, may represent a new means by which to achieve protection from HIV infection in the absence of neutralization. The human phase 2B RV144 ALVAC-HIV vCP1521/AIDSVAX B/E vaccine trial, held in Thailand, resulted in an estimated 31.2% efficacy against HIV infection. By contrast, vaccination with VAX003 (consisting of only AIDSVAX B/E) was not protective. Because protection within RV144 was observed in the absence of neutralizing antibody activity or cytotoxic T cell responses, we speculated that the specificity or qualitative differences in Fc-effector profiles of nonneutralizing antibodies may have accounted for the efficacy differences observed between the two trials. We show that the RV144 regimen elicited nonneutralizing antibodies with highly coordinated Fc-mediated effector responses through the selective induction of highly functional immunoglobulin G3 (IgG3). By contrast, VAX003 elicited monofunctional antibody responses influenced by IgG4 selection, which was promoted by repeated AIDSVAX B/E protein boosts. Moreover, only RV144 induced IgG1 and IgG3 antibodies targeting the crown of the HIV envelope V2 loop, albeit with limited coverage of breakthrough viral sequences. These data suggest that subclass selection differences associated with coordinated humoral functional responses targeting strain-specific protective V2 loop epitopes may underlie differences in vaccine efficacy observed between these two vaccine trials.


PLOS ONE | 2014

Vaccine-Induced IgG Antibodies to V1V2 Regions of Multiple HIV-1 Subtypes Correlate with Decreased Risk of HIV-1 Infection

Susan Zolla-Pazner; Allan C. deCamp; Peter B. Gilbert; Constance Williams; Nicole L. Yates; William T. Williams; Robert Howington; Youyi Fong; Daryl Morris; Kelly A. Soderberg; Carmela Irene; Charles Reichman; Abraham Pinter; Robert Parks; Punnee Pitisuttithum; Jaranit Kaewkungwal; Supachai Rerks-Ngarm; Sorachai Nitayaphan; Charla Andrews; Robert J. O'Connell; Zhi Yong Yang; Gary J. Nabel; Jerome H. Kim; Nelson L. Michael; David C. Montefiori; Hua-Xin Liao; Barton F. Haynes; Georgia D. Tomaras

In the RV144 HIV-1 vaccine efficacy trial, IgG antibody (Ab) binding levels to variable regions 1 and 2 (V1V2) of the HIV-1 envelope glycoprotein gp120 were an inverse correlate of risk of HIV-1 infection. To determine if V1V2-specific Abs cross-react with V1V2 from different HIV-1 subtypes, if the nature of the V1V2 antigen used to asses cross-reactivity influenced infection risk, and to identify immune assays for upcoming HIV-1 vaccine efficacy trials, new V1V2-scaffold antigens were designed and tested. Protein scaffold antigens carrying the V1V2 regions from HIV-1 subtypes A, B, C, D or CRF01_AE were assayed in pilot studies, and six were selected to assess cross-reactive Abs in the plasma from the original RV144 case-control cohort (41 infected vaccinees, 205 frequency-matched uninfected vaccinees, and 40 placebo recipients) using ELISA and a binding Ab multiplex assay. IgG levels to these antigens were assessed as correlates of risk in vaccine recipients using weighted logistic regression models. Levels of Abs reactive with subtype A, B, C and CRF01_AE V1V2-scaffold antigens were all significant inverse correlates of risk (p-values of 0.0008–0.05; estimated odds ratios of 0.53–0.68 per 1 standard deviation increase). Thus, levels of vaccine-induced IgG Abs recognizing V1V2 regions from multiple HIV-1 subtypes, and presented on different scaffolds, constitute inverse correlates of risk for HIV-1 infection in the RV144 vaccine trial. The V1V2 antigens provide a link between RV144 and upcoming HIV-1 vaccine trials, and identify reagents and methods for evaluating V1V2 Abs as possible correlates of protection against HIV-1 infection. Trial Registration ClinicalTrials.gov NCT00223080


PLOS ONE | 2013

Plasma IgG to Linear Epitopes in the V2 and V3 Regions of HIV-1 gp120 Correlate with a Reduced Risk of Infection in the RV144 Vaccine Efficacy Trial

Raphael Gottardo; Robert T. Bailer; Bette T. Korber; S. Gnanakaran; Joshua L. Phillips; Xiaoying Shen; Georgia D. Tomaras; Ellen Turk; Gregory Imholte; Larry Eckler; Holger Wenschuh; Johannes Zerweck; Kelli M. Greene; Hongmei Gao; Phillip W. Berman; Donald P. Francis; Faruk Sinangil; Carter Lee; Sorachai Nitayaphan; Supachai Rerks-Ngarm; Jaranit Kaewkungwal; Punnee Pitisuttithum; James Tartaglia; Merlin L. Robb; Nelson L. Michael; Jerome H. Kim; Susan Zolla-Pazner; Barton F. Haynes; John R. Mascola; Steve Self

Neutralizing and non-neutralizing antibodies to linear epitopes on HIV-1 envelope glycoproteins have potential to mediate antiviral effector functions that could be beneficial to vaccine-induced protection. Here, plasma IgG responses were assessed in three HIV-1 gp120 vaccine efficacy trials (RV144, Vax003, Vax004) and in HIV-1-infected individuals by using arrays of overlapping peptides spanning the entire consensus gp160 of all major genetic subtypes and circulating recombinant forms (CRFs) of the virus. In RV144, where 31.2% efficacy against HIV-1 infection was seen, dominant responses targeted the C1, V2, V3 and C5 regions of gp120. An analysis of RV144 case-control samples showed that IgG to V2 CRF01_AE significantly inversely correlated with infection risk (OR= 0.54, p=0.0042), as did the response to other V2 subtypes (OR=0.60-0.63, p=0.016-0.025). The response to V3 CRF01_AE also inversely correlated with infection risk but only in vaccine recipients who had lower levels of other antibodies, especially Env-specific plasma IgA (OR=0.49, p=0.007) and neutralizing antibodies (OR=0.5, p=0.008). Responses to C1 and C5 showed no significant correlation with infection risk. In Vax003 and Vax004, where no significant protection was seen, serum IgG responses targeted the same epitopes as in RV144 with the exception of an additional C1 reactivity in Vax003 and infrequent V2 reactivity in Vax004. In HIV-1 infected subjects, dominant responses targeted the V3 and C5 regions of gp120, as well as the immunodominant domain, heptad repeat 1 (HR-1) and membrane proximal external region (MPER) of gp41. These results highlight the presence of several dominant linear B cell epitopes on the HIV-1 envelope glycoproteins. They also generate the hypothesis that IgG to linear epitopes in the V2 and V3 regions of gp120 are part of a complex interplay of immune responses that contributed to protection in RV144.

Collaboration


Dive into the Sorachai Nitayaphan's collaboration.

Top Co-Authors

Avatar

Supachai Rerks-Ngarm

Thailand Ministry of Public Health

View shared research outputs
Top Co-Authors

Avatar

Jerome H. Kim

International Vaccine Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nelson L. Michael

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Merlin L. Robb

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark S. de Souza

Henry M. Jackson Foundation for the Advancement of Military Medicine

View shared research outputs
Top Co-Authors

Avatar

Arthur E. Brown

University of Illinois at Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge