Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiming Gao is active.

Publication


Featured researches published by Jiming Gao.


Journal of Virology | 2015

MicroRNA miR-24-3p promotes porcine reproductive and respiratory syndrome virus replication through suppression of heme oxygenase-1 expression.

Shuqi Xiao; Xue Wang; Huaibao Ni; Na Li; Angke Zhang; Hongliang Liu; Fengxing Pu; Lele Xu; Jiming Gao; Qin Zhao; Yang Mu; Chengbao Wang; Yani Sun; Taofeng Du; Xingang Xu; Gaiping Zhang; Julian A. Hiscox; Ian Goodfellow; En-Min Zhou

ABSTRACT Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important viruses affecting the swine industry worldwide. Our previous research showed that PRRSV downregulates the expression of heme oxygenase-1 (HO-1), a pivotal cytoprotective enzyme, postinfection and that overexpression of HO-1 inhibits PRRSV replication. MicroRNAs regulate gene expression at the posttranscriptional level and have recently been demonstrated to play vital roles in pathogen-host interactions. The present study sought to determine whether microRNAs modulate HO-1 expression and, by doing so, regulate PRRSV replication. Using bioinformatic prediction and experimental verification, we demonstrate that HO-1 expression is regulated by miR-24-3p. A direct interaction between miR-24-3p and HO-1 mRNA was confirmed using a number of approaches. Overexpression of miR-24-3p significantly decreased HO-1 mRNA and protein levels. PRRSV infection induced miR-24-3p expression to facilitate viral replication. The suppressive effect of HO-1 induction by protoporphyrin IX cobalt chloride (CoPP; a classical inducer of HO-1 expression) on PRRSV replication in MARC-145 cells and primary porcine alveolar macrophages could also be reversed by overexpression of miR-24-3p. Collectively, these results suggested that miR-24-3p promotes PRRSV replication through suppression of HO-1 expression, which not only provides new insights into virus-host interactions during PRRSV infection but also suggests potential new antiviral strategies against PRRSV infection. IMPORTANCE MicroRNAs (miRNAs) play vital roles in viral infections by regulating the expression of viral or host genes at the posttranscriptional level. Heme oxygenase-1 (HO-1), a pivotal cytoprotective enzyme, has antiviral activity for a number of viruses, such as Ebola virus, hepatitis C virus, human immunodeficiency virus, and our focus, PRRSV, which causes great economic losses each year in the swine industry worldwide. Here, we show that PRRSV infection induces host miRNA miR-24-3p expression and that miR-24-3p regulates HO-1 expression through both mRNA degradation and translation repression. Suppression of HO-1 expression by miR-24-3p facilitates PRRSV replication. This work lends credibility to the hypothesis that an arterivirus can manipulate cellular miRNAs to enhance virus replication by regulating antiviral responses following viral infection. Therefore, our findings provide new insights into the pathogenesis of PRRSV.


Antiviral Research | 2014

Heme oxygenase-1 acts as an antiviral factor for porcine reproductive and respiratory syndrome virus infection and over-expression inhibits virus replication in vitro.

Shuqi Xiao; Angke Zhang; Chong Zhang; Huaibo Ni; Jiming Gao; Chengbao Wang; Qin Zhao; Xiangpeng Wang; Xue Wang; Chao Ma; Hongliang Liu; Na Li; Yang Mu; Yani Sun; Gaiping Zhang; Julian A. Hiscox; Walter H. Hsu; En-Min Zhou

Virus replication depends upon host-cell processes in infected cells, and this is true for porcine reproductive and respiratory syndrome virus (PRRSV), the causative agent of PRRS that is a worldwide threat to the swine industry. Heme oxygenase-1 (HO-1) is a ubiquitously expressed inducible isoform of the first and rate-limiting enzyme for heme degradation. Our previous research suggested that HO-1 may play an important role in PRRSV infection. However, the function of HO-1 in PRRSV infection is unclear. In the present study, Marc-145, PK-15(CD163) cell lines and porcine alveolar macrophages (PAMs) were used to evaluate the effects of HO-1 induction and over-expression on the replication of two different PRRSV strains. Induction of HO-1 markedly decreased the replication of PRRSV strains in the different cells. Similarly, adenoviral-mediated over-expression of HO-1 also greatly decreased the replication of PRRSV. In contrast, ablation of HO-1 using small interfering RNA concomitantly increased PRRSV replication. Therefore, the data were consistent with HO-1 acting as an antiviral factor and these findings suggested that over-expression or induction of HO-1 may provide a potential therapeutic strategy against PRRSV infection.


Scientific Reports | 2016

MYH9 is an Essential Factor for Porcine Reproductive and Respiratory Syndrome Virus Infection

Jiming Gao; Shuqi Xiao; Yihong Xiao; Xiangpeng Wang; Chong Zhang; Qin Zhao; Yuchen Nan; Baicheng Huang; Hongliang Liu; Ningning Liu; Junhua Lv; Taofeng Du; Yani Sun; Yang Mu; Gang Wang; Shahid Faraz Syed; Gaiping Zhang; Julian A. Hiscox; Ian Goodfellow; En-Min Zhou

Porcine reproductive and respiratory syndrome (PRRS) caused by the PRRS virus (PRRSV) is an important swine disease worldwide. PRRSV has a limited tropism for certain cells, which may at least in part be attributed to the expression of the necessary cellular molecules serving as the virus receptors or factors on host cells for virus binding or entry. However, these molecules conferring PRRSV infection have not been fully characterized. Here we show the identification of non-muscle myosin heavy chain 9 (MYH9) as an essential factor for PRRSV infection using the anti-idiotypic antibody specific to the PRRSV glycoprotein GP5. MYH9 physically interacts with the PRRSV GP5 protein via its C-terminal domain and confers susceptibility of cells to PRRSV infection. These findings indicate that MYH9 is an essential factor for PRRSV infection and provide new insights into PRRSV-host interactions and viral entry, potentially facilitating development of control strategies for this important swine disease.


Journal of Virological Methods | 2013

PK-15 cells transfected with porcine CD163 by PiggyBac transposon system are susceptible to porcine reproductive and respiratory syndrome virus.

Xiangpeng Wang; Ruifang Wei; Qiongyi Li; Hongliang Liu; Baicheng Huang; Jiming Gao; Yang Mu; Chengbao Wang; Walter H. Hsu; Julian A. Hiscox; En-Min Zhou

The PiggyBac (PB) transposon system is a non-viral DNA-transfer system in which a transposase directs integration of a PB transposon into a TTAA site in the genome. Transgenic expression of porcine CD163 is necessary and sufficient to confer non-permissive cells susceptible to infection with porcine reproductive and respiratory syndrome virus (PRRSV). Such permissive cells can be used as a tool for PRRSV cellular receptor and other studies. One of the problems in studying PRRSV is the lack of porcine cell lines. In this study, efficient transfection and expression of porcine CD163 in PK-15 cells by PB transposition was demonstrated. The stable PK-15CD163 cell line was used in PRRSV infection assays. The data indicated that the average PB transgene copy number per genome was approximately 10. In line with previous literature the integration of PB into the genome had a bias toward the TTAA chromosomal site. The PK-15CD163 cell line was susceptible to infection by different PRRSV strains and the virus grew to similar titers compared to the Marc-145 cell line. This simplification of PK-15CD163 cell line production will provide a valuable tool to facilitate PRRSV cellular receptor studies and to accelerate existing vectors for PK-15 cell-based gene transfer and expression.


Veterinary Microbiology | 2015

An intracellularly expressed Nsp9-specific nanobody in MARC-145 cells inhibits porcine reproductive and respiratory syndrome virus replication

Hongliang Liu; Yan Wang; Hong Duan; Angke Zhang; Chao Liang; Jiming Gao; Chong Zhang; Baicheng Huang; Qiongyi Li; Na Li; Shuqi Xiao; En-Min Zhou

Porcine reproductive and respiratory syndrome (PRRS) is a widespread viral disease affecting the swine industry, with no cure or effective treatment. Current vaccines are inefficient mainly due to the high degree of genetic and antigenic variation within PRRS virus (PRRSV) strains. Thus, the development of novel anti-PRRSV strategies is an important area of research. The nonstructural protein 9 (Nsp9) of PRRSV is essential for viral replication, and its sequence is relatively conserved, making it a logical antiviral target for PRRSV. Camel single-domain antibodies (nanobodies) represent a promising antiviral approach because of their small size, high specificity, and solubility. However, no nanobodies against PRRSV have been reported to date. In this study, Nsp9-specific nanobodies were isolated from a phage display library of variable domains of Camellidaeheavy chain-only antibodies (VHH). One of the isolated nanobodies, Nb6, was chosen for further investigation. Co-immunoprecipitation experiments indicated that Nb6 can still maintain antigen binding capabilities when expressed in the cell cytoplasm. A MARC-145 cell line stably expressing Nb6 was established to investigate its potential antiviral activity. Our results showed that intracellularly expressed Nb6 could potently suppress PRRSV replication by inhibiting viral genome replication and transcription. More importantly, Nb6 could protect MARC-145 cells from virus-induced cytopathic effect (CPE) and fully block PRRSV replication at an MOI of 0.01 or lower. To our knowledge, this is the first report of a nanobody based antiviral strategy against PRRSV, and this finding has the potential to lead to future developments of novel antiviral treatments for PRRSV infection.


Journal of Virology | 2015

Characterization of Two Novel Linear B-Cell Epitopes in the Capsid Protein of Avian Hepatitis E Virus (HEV) That Are Common to Avian, Swine, and Human HEVs

Xinjie Wang; Qin Zhao; Lu Dang; Yani Sun; Jiming Gao; Baoyuan Liu; Shahid Faraz Syed; Hu Tao; Gaiping Zhang; Jianxun Luo; En-Min Zhou

ABSTRACT Antisera raised against the avian hepatitis E virus (HEV) capsid protein are cross-reactive with human and swine HEV capsid proteins. In this study, two monoclonal antibodies (MAbs) against the avian HEV capsid protein, namely, 3E8 and 1B5, were shown to cross-react with the swine HEV capsid protein. The motifs involved in binding both MAbs were identified and characterized using phage display biopanning, peptide synthesis, and truncated or mutated protein expression, along with indirect enzyme-linked immunosorbent assay (ELISA) and Western blotting. The results showed that the I/VPHD motif is a necessary core sequence and that P and H are two key amino acids for recognition by MAb 3E8. The VKLYM/TS motif is the minimal amino acid sequence necessary for recognition by MAb 1B5. Cross-reactivity between the two epitopes and antibodies against avian, swine, and human HEVs in sera showed that both epitopes are common to avian, swine, and human HEVs. In addition, amino acid sequence alignment of the capsid proteins revealed that the key motifs of both novel epitopes are the same in HEVs from different animal species, predicting that they may be common to HEV isolates from boars, rabbits, rats, ferrets, mongooses, deer, and camels as well. Protein modeling analysis showed that both epitopes are at least partially exposed on the surface of the HEV capsid protein. Protective capacity analysis demonstrated that the two epitopes are nonprotective against avian HEV infection in chickens. Collectively, these studies characterize two novel linear B-cell epitopes common to avian, swine, and human HEVs, which furthers the understanding of HEV capsid protein antigenic structure. IMPORTANCE More and more evidence indicates that the host range diversity of hepatitis E virus (HEV) is a global public health concern. A better understanding of the antigenic structure of the HEV capsid protein may improve disease diagnosis and prevention. In this study, binding site mapping and localization as well as the antigenic biology of two novel linear B-cell epitopes common to several different species of HEV were characterized. These findings partially reveal the antigenic structure of the HEV capsid protein and provide potential applications for the development of diagnostics and interventions for HEV infection.


Virology | 2015

Glycoprotein 5 of porcine reproductive and respiratory syndrome virus strain SD16 inhibits viral replication and causes G2/M cell cycle arrest, but does not induce cellular apoptosis in Marc-145 cells

Yang Mu; Liangliang Li; Beibei Zhang; Baicheng Huang; Jiming Gao; Xiangpeng Wang; Chengbao Wang; Shuqi Xiao; Qin Zhao; Yani Sun; Gaiping Zhang; Julian A. Hiscox; En-Min Zhou

Cell apoptosis is common after infection with porcine reproductive and respiratory syndrome virus (PRRSV). PRRSV GP5 has been reported to induce cell apoptosis. To further understand the role of GP5 in PRRSV induced cell apoptosis, we established Marc-145 cell lines stably expressing full-length GP5, GP5(Δ84-96) (aa 84-96 deletion), and GP5(Δ97-119) (aa 97-119 deletion). Cell proliferation, cell cycle progression, cell apoptosis and virus replication in these cell lines were evaluated. Neither truncated nor full-length GP5 induced cell apoptosis in Marc-145 cells. However, GP5(Δ97-119), but not full-length or GP5(Δ84-96), induced a cell cycle arrest at the G2/M phase resulting in a reduction in the growth of Marc-145 cells. Additionally, GP5(Δ84-96) inhibited the replication of PRRSV in Marc-145 cells through induction of IFN-β. These findings suggest that PRRSV GP5 is not responsible for inducing cell apoptosis in Marc-145 cells under these experimental conditions; however it has other important roles in virus/host cell biology.


Scientific Reports | 2015

Heme Oxygenase-1 Suppresses Bovine Viral Diarrhoea Virus Replication in vitro

Chong Zhang; Fengxing Pu; Angke Zhang; Lele Xu; Na Li; Yunhuan Yan; Jiming Gao; Hongliang Liu; Gaiping Zhang; Ian Goodfellow; En-Min Zhou; Shuqi Xiao

Viral cycle progression depends upon host-cell processes in infected cells, and this is true for bovine viral diarrhoea virus (BVDV), the causative agent of BVD that is a worldwide threat to the bovine industry. Heme oxygenase-1 (HO-1) is a ubiquitously expressed inducible isoform of the first and rate-limiting enzyme for heme degradation. Recent studies have demonstrated that HO-1 has significant antiviral properties, inhibiting the replication of viruses such as ebola virus, human immunodeficiency virus, hepatitis C virus, and porcine reproductive and respiratory syndrome virus. However, the function of HO-1 in BVDV infection is unclear. In the present study, the relationship between HO-1 and BVDV was investigated. In vitro analysis of HO-1 expression in BVDV-infected MDBK cells demonstrated that a decrease in HO-1 as BVDV replication increased. Increasing HO-1 expression through adenoviral-mediated overexpression or induction with cobalt protoporphyrin (CoPP, a potent HO-1 inducer), pre- and postinfection, effectively inhibited BVDV replication. In contrast, HO-1 siRNA knockdown in BVDV-infected cells increased BVDV replication. Therefore, the data were consistent with HO-1 acting as an anti-viral factor and these findings suggested that induction of HO-1 may be a useful prevention and treatment strategy against BVDV infection.


BMC Veterinary Research | 2015

Development and evaluation of a SYBR Green real-time RT-PCR assay for detection of avian hepatitis E virus.

Qin Zhao; Sha Xie; Yani Sun; Yiyang Chen; Jiming Gao; Huiya Li; Xinjie Wang; Shahid Faraz Syed; Baoyuan Liu; Lizhen Wang; Gaiping Zhang; En-Min Zhou

BackgroundAvian hepatitis E virus (HEV) is the main causative agent of big liver and spleen disease, as well as hepatitis-splenomegaly syndrome in chickens. To date, conventional reverse transcriptase polymerase chain reaction (RT-PCR) and nested RT-PCR methods have been used for the diagnosis of avian HEV infection in chickens. However, these assays are time consuming, inconvenient, and cannot detect the virus quantitatively. In this study, a rapid and sensitive SYBR Green real-time RT-PCR assay was developed to detect avian HEV RNA quantitatively in serum, liver, spleen, and fecal samples from chickens.ResultsBased on the sequence of the most conserved HEV gene, ORF3, the primers for the assay were designed, and the standard plasmid was constructed. The detection limit of the assay was shown to be 10 copies/μl of standard plasmid/reaction, with a corresponding cycle-threshold value of 29.3. The standard curve exhibited a dynamic linear range across at least 7 log units of DNA copy number. The specificity and reproducibility of this assay was high, showing that the assay detected avian HEV RNA specifically and with little variability. Compared to conventional RT-PCR, the current assay is more sensitive for detecting avian HEV in serum, liver, spleen, and fecal samples from chickens.ConclusionsA rapid, specific, and reproducible SYBR Green real-time RT-PCR assay was developed for the diagnosis of avian HEV infection in chickens. This assay can accurately detect avian HEV RNA in serum, liver, spleen, and fecal samples with more sensitivity than conventional RT-PCR.


Scientific Reports | 2016

MicroRNA let-7f-5p Inhibits Porcine Reproductive and Respiratory Syndrome Virus by Targeting MYH9

Na Li; Taofeng Du; Yunhuan Yan; Angke Zhang; Jiming Gao; Gaopeng Hou; Shuqi Xiao; En-Min Zhou

Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important viral pathogens in the swine industry. Current antiviral strategies do not effectively prevent and control PRRSV. Recent reports show that microRNAs (miRNAs) play vital roles in viral infections by post transcriptionally regulating the expression of viral or host genes. Our previous research showed that non-muscle myosin heavy chain 9 (MYH9) is an essential factor for PRRSV infection. Using bioinformatic prediction and experimental verification, we demonstrate that MYH9 expression is regulated by the miRNA let-7f-5p, which binds to the MYH9 mRNA 3′UTR and may play an important role during PRRSV infection. To understand how let-7f-5p regulates PRRSV infection, we analyzed the expression pattern of both let-7f-5p and MYH9 in porcine alveolar macrophages (PAMs) after infection with either highly pathogenic PRRSV (HP-PRRSV) or classical type PRRSV (N-PRRSV) using a deep sequencing approach with quantitative real-time PCR validation. Our results showed that both HP-PRRSV and N-PRRSV infection reduced let-7f-5p expression while also inducing MYH9 expression. Furthermore, let-7f-5p significantly inhibited PRRSV replication through suppression of MYH9 expression. These findings not only provide new insights into the pathogenesis of PRRSV, but also suggest potential new antiviral strategies against PRRSV infection.

Collaboration


Dive into the Jiming Gao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gaiping Zhang

Henan Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge