Jimmy J. Fraigne
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jimmy J. Fraigne.
Frontiers in Neurology | 2015
Jimmy J. Fraigne; Zoltan A. Torontali; Matthew B. Snow; John H. Peever
Rapid eye movement (REM) sleep is generated and maintained by the interaction of a variety of neurotransmitter systems in the brainstem, forebrain, and hypothalamus. Within these circuits lies a core region that is active during REM sleep, known as the subcoeruleus nucleus (SubC) or sublaterodorsal nucleus. It is hypothesized that glutamatergic SubC neurons regulate REM sleep and its defining features such as muscle paralysis and cortical activation. REM sleep paralysis is initiated when glutamatergic SubC cells activate neurons in the ventral medial medulla, which causes release of GABA and glycine onto skeletal motoneurons. REM sleep timing is controlled by activity of GABAergic neurons in the ventrolateral periaqueductal gray and dorsal paragigantocellular reticular nucleus as well as melanin-concentrating hormone neurons in the hypothalamus and cholinergic cells in the laterodorsal and pedunculo-pontine tegmentum in the brainstem. Determining how these circuits interact with the SubC is important because breakdown in their communication is hypothesized to underlie narcolepsy/cataplexy and REM sleep behavior disorder (RBD). This review synthesizes our current understanding of mechanisms generating healthy REM sleep and how dysfunction of these circuits contributes to common REM sleep disorders such as cataplexy/narcolepsy and RBD.
Scientific Reports | 2017
Garret A. Horton; Jimmy J. Fraigne; Zoltan A. Torontali; Matthew B. Snow; Jennifer L. Lapierre; Hattie Liu; Gaspard Montandon; John H. Peever; Richard L. Horner
Reduced tongue muscle tone precipitates obstructive sleep apnea (OSA), and activation of the tongue musculature can lessen OSA. The hypoglossal motor nucleus (HMN) innervates the tongue muscles but there is no pharmacological agent currently able to selectively manipulate a channel (e.g., Kir2.4) that is highly restricted in its expression to cranial motor pools such as the HMN. To model the effect of manipulating such a restricted target, we introduced a “designer” receptor into the HMN and selectively modulated it with a “designer” drug. We used cre-dependent viral vectors (AAV8-hSyn-DIO-hM3Dq-mCherry) to transduce hypoglossal motoneurons of ChAT-Cre+ mice with hM3Dq (activating) receptors. We measured sleep and breathing in three conditions: (i) sham, (ii) after systemic administration of clozapine-N-oxide (CNO; 1 mg/kg) or (iii) vehicle. CNO activates hM3Dq receptors but is otherwise biologically inert. Systemic administration of CNO caused significant and sustained increases in tongue muscle activity in non-REM (261 ± 33% for 10 hrs) and REM sleep (217 ± 21% for 8 hrs), both P < 0.01 versus controls. Responses were specific and selective for the tongue with no effects on diaphragm or postural muscle activities, or sleep-wake states. These results support targeting a selective and restricted “druggable” target at the HMN (e.g., Kir2.4) to activate tongue motor activity during sleep.
Respiratory Physiology & Neurobiology | 2012
Andrew T. Lovering; Jimmy J. Fraigne; Witali L. Dunin-Barkowski; Edward H. Vidruk; John Orem
It is unknown how central neural activity produces the repetitive termination and restart of periodic breathing (PB). We hypothesized that inspiratory and expiratory neural activities would be greatest during the waxing phase and least during the waning phase. We analyzed diaphragmatic and medullary respiratory neural activities during PB in intact unanesthetized adult cats. Diaphragmatic activity was increased and phasic during the waxing phase and was decreased and tonic during the waning phase. Activity of expiratory (n=21) and inspiratory (n=40) neurons was generally increased and phasic during the waxing phase and was decreased and more tonic during the waning phase. During apneas associated with PB, diaphragmatic activity was silent and most, but not all, inspiratory cells were inactive whereas most expiratory cells decreased activity but remained tonically active. We suggest that reduced strength of reciprocal inhibition, secondary to reduced respiratory drive, allows for simultaneous tonic activity of inspiratory and expiratory neurons of the central pattern generator, ultimately resulting in central apnea.
The Journal of Neuroscience | 2017
Matthew B. Snow; Jimmy J. Fraigne; Gabrielle Thibault-Messier; Victoria L. Chuen; Aren Thomasian; Richard L. Horner; John H. Peever
Cataplexy is a hallmark of narcolepsy characterized by the sudden uncontrollable onset of muscle weakness or paralysis during wakefulness. It can occur spontaneously, but is typically triggered by positive emotions such as laughter. Although cataplexy was identified >130 years ago, its neural mechanism remains unclear. Here, we show that a newly identified GABA circuit within the central nucleus of the amygdala (CeA) promotes cataplexy. We used behavioral, electrophysiological, immunohistochemical, and chemogenetic strategies to target and manipulate CeA activity selectively in narcoleptic (orexin−/−) mice to determine its functional role in controlling cataplexy. First, we show that chemogenetic activation of the entire CeA produces a marked increase in cataplexy attacks. Then, we show that GABA cells within the CeA are responsible for mediating this effect. To manipulate GABA cells specifically, we developed a new mouse line that enables genetic targeting of GABA cells in orexin−/− mice. We found that chemogenetic activation of GABA CeA cells triggered a 253% increase in the number of cataplexy attacks without affecting their duration, suggesting that GABA cells play a functional role in initiating but not maintaining cataplexy. We show that GABA cell activation only promotes cataplexy attacks associated with emotionally rewarding stimuli, not those occurring spontaneously. However, we found that chemogenetic inhibition of GABA CeA cells does not prevent cataplexy, suggesting these cells are not required for initiating cataplexy attacks. Our results indicate that the CeA promotes cataplexy onset and that emotionally rewarding stimuli may trigger cataplexy by activating GABA cells in the CeA. SIGNIFICANCE STATEMENT Although cataplexy has been closely linked to positive emotions for >130 years, the neural circuitry that underlies this relationship is poorly understood. Recent work suggests that the amygdala, a brain area important for processing emotion, may be part of this circuit. This study provides the first functional evidence to implicate GABA cells in the amygdala as regulators of cataplexy triggered by positive emotions and identifies the amygdala as the brain region important more for gating the entrance into rather than the exit from cataplexy. We also generated a new mouse model for studying GABA neurons in narcoleptic mice, which could serve as a useful tool for studying the neurobiological underpinnings of narcolepsy.
Current Opinion in Pulmonary Medicine | 2014
Jimmy J. Fraigne; Kevin P. Grace; Richard L. Horner; John H. Peever
Purpose of review Our understanding of rapid eye movement (REM) sleep and how it is generated remains a topic of debate. Understanding REM sleep mechanisms is important because several sleep disorders result from disturbances in the neural circuits that control REM sleep and its characteristics. This review highlights recent work concerning how the central nervous system regulates REM sleep, and how the make up and breakdown of these REM sleep-generating circuits contribute to narcolepsy, REM sleep behaviour disorder and sleep apnea. Recent findings A complex interaction between brainstem REM sleep core circuits and forebrain and hypothalamic structures is necessary to generate REM sleep. Cholinergic activation and GABAergic inhibition trigger the activation of subcoeruleus neurons, which form the core of the REM sleep circuit. Summary Untimely activation of REM sleep circuits leads to cataplexy – involuntary muscle weakness or paralysis – a major symptom of narcolepsy. Degeneration of the REM circuit is associated with excessive muscle activation in REM sleep behaviour disorder. Inappropriate arousal from sleep during obstructive sleep apnea repeatedly disturbs the activity of sleep circuits, particularly the REM sleep circuit.
Current Biology | 2012
Jimmy J. Fraigne; John H. Peever
The barrel cortex and whisker thalamus preferentially respond to whisker movements during REM sleep in infant rats. Understanding why the brain tunes into sensory signals while its tuned out in sleep may provide clues about the functions of REM sleep.
Current Biology | 2013
Jimmy J. Fraigne; John H. Peever
During rapid eye movement sleep, the forelimb muscles of newborn rats jerk and twitch in an organized pattern, the fidelity of which improves with time. The coordinated nature of such sleep movements may instruct the developing brain how to more effectively execute movements during wakefulness.
Sleep | 2008
Jimmy J. Fraigne; Witali L. Dunin-Barkowski; John Orem
Sleep | 2013
Jimmy J. Fraigne; John H. Peever
Journal of Neurophysiology | 2006
Andrew T. Lovering; Jimmy J. Fraigne; Witali L. Dunin-Barkowski; Edward H. Vidruk; John Orem