Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jimmy K. Stauffer is active.

Publication


Featured researches published by Jimmy K. Stauffer.


Journal of Immunology | 2004

IL-27 Mediates Complete Regression of Orthotopic Primary and Metastatic Murine Neuroblastoma Tumors: Role for CD8+ T Cells

Rosalba Salcedo; Jimmy K. Stauffer; Erin Lincoln; Timothy C. Back; Julie A. Hixon; Cynthia Hahn; Kimberly Shafer-Weaver; Anatoli Malyguine; Robert A. Kastelein; Jon M. Wigginton

We have shown previously that IFN-γ-inducing cytokines such as IL-12 can mediate potent antitumor effects against murine solid tumors. IL-27 is a newly described IL-12-related cytokine that potentiates various aspects of T and/or NK cell function. We hypothesized that IL-27 might also mediate potent antitumor activity in vivo. TBJ neuroblastoma cells engineered to overexpress IL-27 demonstrated markedly delayed growth compared with control mice, and complete durable tumor regression was observed in >90% of mice bearing either s.c. or orthotopic intra-adrenal tumors, and 40% of mice bearing induced metastatic disease. The majority of mice cured of their original TBJ-IL-27 tumors were resistant to tumor rechallenge. Furthermore, TBJ-IL-27 tumors were heavily infiltrated by CD8+ T cells, and draining lymph node-derived lymphocytes from mice bearing s.c. TBJ-IL-27 tumors are primed to proliferate more readily when cultured ex vivo with anti-CD3/anti-CD28 compared with lymphocytes from mice bearing control tumors, and to secrete higher levels of IFN-γ. In addition, marked enhancement of local IFN-γ gene expression and potent up-regulation of cell surface MHC class I expression are noted within TBJ-IL-27 tumors compared with control tumors. Functionally, these alterations occur in conjunction with the generation of tumor-specific CTL reactivity in mice bearing TBJ-IL-27 tumors, and the induction of tumor regression via mechanisms that are critically dependent on CD8+, but not CD4+ T cells or NK cells. Collectively, these studies suggest that IL-27 could be used therapeutically to potentiate the host antitumor immune response in patients with malignancy.


Molecular and Cellular Biology | 1996

Common Core Sequences Are Found in Skeletal Muscle Slow- and Fast-Fiber-Type-Specific Regulatory Elements

Manabu Nakayama; Jimmy K. Stauffer; Jun Cheng; Sharmila Banerjee-Basu; Eric F. Wawrousek; Andandres Buonanno

The molecular mechanisms generating muscle diversity during development are unknown. The phenotypic properties of slow- and fast-twitch myofibers are determined by the selective transcription of genes coding for contractile proteins and metabolic enzymes in these muscles, properties that fail to develop in cultured muscle. Using transgenic mice, we have identified regulatory elements in the evolutionarily related troponin slow (TnIs) and fast (TnIf) genes that confer specific transcription in either slow or fast muscles. Analysis of serial deletions of the rat TnIs upstream region revealed that sequences between kb -0.95 and -0.5 are necessary to confer slow-fiber-specific transcription; the -0.5-kb fragment containing the basal promoter was inactive in five transgenic mouse lines tested. We identified a 128-bp regulatory element residing at kb -0.8 that, when linked to the -0.5-kb TnIs promoter, specifically confers transcription to slow-twitch muscles. To identify sequences directing fast-fiber-specific transcription, we generated transgenic mice harboring a construct containing the TnIs kb -0.5 promoter fused to a 144-bp enhancer derived from the quail TnIf gene. Mice harboring the TnIf/TnIs chimera construct expressed the transgene in fast but not in slow muscles, indicating that these regulatory elements are sufficient to confer fiber-type-specific transcription. Alignment of rat TnIs and quail TnIf regulatory sequences indicates that there is a conserved spatial organization of core elements, namely, an E box, a CCAC box, a MEF-2-like sequence, and a previously uncharacterized motif. The core elements were shown to bind their cognate factors by electrophoretic mobility shift assays, and their mutation demonstrated that the TnIs CCAC and E boxes are necessary for transgene expression. Our results suggest that the interaction of closely related transcriptional protein-DNA complexes is utilized to specify fiber type diversity.


Nature Cell Biology | 2015

Early steps in primary cilium assembly require EHD1/EHD3-dependent ciliary vesicle formation

Quanlong Lu; Christine Insinna; Carolyn Ott; Jimmy K. Stauffer; Petra Pintado; Juliati Rahajeng; Ulrich Baxa; Vijay Walia; Adrian Cuenca; Yoo Seok Hwang; Ira O. Daar; Susana S. Lopes; Jennifer Lippincott-Schwartz; Peter K. Jackson; Steve Caplan; Christopher J. Westlake

Membrane association with mother centriole (M-centriole) distal appendages is critical for ciliogenesis initiation. How the Rab GTPase Rab11–Rab8 cascade functions in early ciliary membrane assembly is unknown. Here, we show that the membrane shaping proteins EHD1 and EHD3, in association with the Rab11–Rab8 cascade, function in early ciliogenesis. EHD1 and EHD3 localize to preciliary membranes and the ciliary pocket. EHD-dependent membrane tubulation is essential for ciliary vesicle formation from smaller distal appendage vesicles (DAVs). Importantly, this step functions in M-centriole to basal body transformation and recruitment of transition zone proteins and IFT20. SNAP29, a SNARE membrane fusion regulator and EHD1-binding protein, is also required for DAV-mediated ciliary vesicle assembly. Interestingly, only after ciliary vesicle assembly is Rab8 activated for ciliary growth. Our studies uncover molecular mechanisms informing a previously uncharacterized ciliogenesis step, whereby EHD1 and EHD3 reorganize the M-centriole and associated DAVs before coordinated ciliary membrane and axoneme growth.


Hepatology | 2012

Chronic inflammation, immune escape, and oncogenesis in the liver: a unique neighborhood for novel intersections.

Jimmy K. Stauffer; Anthony J. Scarzello; Qun Jiang; Robert H. Wiltrout

Sustained hepatic inflammation, driven by alcohol consumption, nonalcoholic fatty liver disease, and/or chronic viral hepatitis (hepatitis B and C), results in damage to parenchyma, oxidative stress, and compensatory regeneration/proliferation. There is substantial evidence linking these inflammation‐associated events with the increased incidence of hepatocellular carcinogenesis. Although acute liver inflammation can play a vital and beneficial role in response to liver damage or acute infection, the effects of chronic liver inflammation, including liver fibrosis and cirrhosis, are sufficient in a fraction of individuals to initiate the process of transformation and the development of hepatocellular carcinoma. This review highlights immune‐dependent mechanisms that may be associated with hepatocellular oncogenesis, including critical transformative events/pathways in the context of chronic inflammation and subverted tolerogenesis. (HEPATOLOGY 2012)


Journal of Immunology | 2009

Immunologic and Therapeutic Synergy of IL-27 and IL-2: Enhancement of T Cell Sensitization, Tumor-Specific CTL Reactivity and Complete Regression of Disseminated Neuroblastoma Metastases in the Liver and Bone Marrow

Rosalba Salcedo; Julie A. Hixon; Jimmy K. Stauffer; Rashmi Jalah; Alan D. Brooks; Tahira Khan; Ren-Ming Dai; Loretta Scheetz; Erin Lincoln; Timothy C. Back; Douglas Powell; Arthur A. Hurwitz; Thomas J. Sayers; Robert A. Kastelein; George N. Pavlakis; Barbara K. Felber; Giorgio Trinchieri; Jon M. Wigginton

IL-27 exerts antitumor activity in murine orthotopic neuroblastoma, but only partial antitumor effect in disseminated disease. This study demonstrates that combined treatment with IL-2 and IL-27 induces potent antitumor activity in disseminated neuroblastoma metastasis. Complete durable tumor regression was achieved in 90% of mice bearing metastatic TBJ-IL-27 tumors treated with IL-2 compared with only 40% of mice bearing TBJ-IL-27 tumors alone and 0% of mice bearing TBJ-FLAG tumors with or without IL-2 treatment. Comparable antitumor effects were achieved by IL-27 protein produced upon hydrodynamic IL-27 plasmid DNA delivery when combined with IL-2. Although delivery of IL-27 alone, or in combination with IL-2, mediated pronounced regression of neuroblastoma metastases in the liver, combined delivery of IL-27 and IL-2 was far more effective than IL-27 alone against bone marrow metastases. Combined exposure to IL-27 produced by tumor and IL-2 synergistically enhances the generation of tumor-specific CTL reactivity. Potentiation of CTL reactivity by IL-27 occurs via mechanisms that appear to be engaged during both the initial sensitization and effector phase. Potent immunologic memory responses are generated in mice cured of their disseminated disease by combined delivery of IL-27 and IL-2, and depletion of CD8+ ablates the antitumor efficacy of this combination. Moreover, IL-27 delivery can inhibit the expansion of CD4+CD25+Foxp3+ regulatory and IL-17-expressing CD4+ cells that are otherwise observed among tumor-infiltrating lymphocytes from mice treated with IL-2. These studies demonstrate that IL-27 and IL-2 synergistically induce complete tumor regression and long-term survival in mice bearing widely metastatic neuroblastoma tumors.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Successful immunotherapy with IL-2/anti-CD40 induces the chemokine-mediated mitigation of an immunosuppressive tumor microenvironment

Jonathan M. Weiss; Timothy C. Back; Anthony J. Scarzello; Jeff Subleski; Veronica L. Hall; Jimmy K. Stauffer; Xin Chen; Dejan Micic; Kory Alderson; William J. Murphy; Robert H. Wiltrout

Treatment of mice bearing orthotopic, metastatic tumors with anti-CD40 antibody resulted in only partial, transient anti-tumor effects whereas combined treatment with IL-2/anti-CD40, induced tumor regression. The mechanisms for these divergent anti-tumor responses were examined by profiling tumor-infiltrating leukocyte subsets and chemokine expression within the tumor microenvironment after immunotherapy. IL-2/anti-CD40, but not anti-CD40 alone, induced significant infiltration of established tumors by NK and CD8+ T cells. To further define the role of chemokines in leukocyte recruitment into tumors, we evaluated anti-tumor responses in mice lacking the chemokine receptor, CCR2. The anti-tumor effects and leukocyte recruitment mediated by anti-CD40 alone, were completely abolished in CCR2−/− mice. In contrast, IL-2/anti-CD40-mediated leukocyte recruitment and reductions in primary tumors and metastases were maintained in CCR2−/− mice. Treatment of mice with IL-2/anti-CD40, but not anti-CD40 alone, also caused an IFN-γ-dependent increase in the expression of multiple Th1 chemokines within the tumor microenvironment. Interestingly, although IL-2/anti-CD40 treatment increased Tregs in the spleen, it also caused a coincident IFN-γ-dependent reduction in CD4+/FoxP3+ Tregs, myeloid-derived suppressor cells and Th2 chemokine expression specifically within the tumor microenvironment that was not observed after treatment with anti-CD40 alone. Similar effects were observed using IL-15 in combination with anti-CD40. Taken together, our data demonstrate that IL-2/anti-CD40, but not anti-CD40 alone, can preferentially reduce the overall immunosuppressive milieu within the tumor microenvironment. These results suggest that the use of anti-CD40 in combination with IL-2 or IL-15 may hold substantially more promise for clinical cancer treatment than anti-CD40 alone.


International Journal of Cancer | 2013

NOS2 enhances KRAS-induced lung carcinogenesis, inflammation and microRNA-21 expression.

Hirokazu Okayama; Motonobu Saito; Naohide Oue; Jonathan M. Weiss; Jimmy K. Stauffer; Seiichi Takenoshita; Robert H. Wiltrout; S. Perwez Hussain; Curtis C. Harris

Mutant KRAS in lung cancers induces molecular pathways that regulate cellular proliferation, survival and inflammation, which enhance tumorigenesis. Inducible nitric oxide synthase (NOS2) upregulation and sustained nitric oxide generation are induced during the inflammatory response and correlate positively with lung tumorigenesis. To explore the mechanistic contribution of NOS2 to KRAS‐induced lung tumorigenesis and inflammation, we used a genetic strategy of crossing NOS2 knockout (NOS2KO) C57BL6 inbred mice with a KRASG12D‐driven mouse lung cancer model. KRASG12D;NOS2KO mice exhibited delayed lung tumorigenesis and a longer overall survival time compared to that of KRASG12D;NOS2WT (wild‐type) controls. Correspondingly, tumors in KRASG12D;NOS2KO mice had reduced tumor cell proliferation in adenomas and carcinomas. NOS2 deficiency also led to markedly suppressed inflammatory response by attenuation of macrophage recruitment into alveoli and within tumor foci. In contrast, FOXP3+ regulatory T cells were increased in tumors from KRASG12D;NOS2KO mice. We further analyzed the expression of microRNA‐21 (miR‐21), an oncogenic noncoding RNA involved in oncogenic Ras signaling, by quantitative reverse‐transcription polymerase chain reaction and in situ hybridization. Lung carcinomas dissected from KRASG12D;NOS2KO mice showed a significantly reduced miR‐21 expression along with decreased tumor cell proliferation, suggesting that NOS2 deficiency could attenuate RAS signaling pathways that transactivate miR‐21 expression. Therefore, deletion of NOS2 decreases lung tumor growth as well as inflammatory responses initiated by oncogenic KRAS, suggesting that both KRAS and NOS2 cooperate in driving lung tumorigenesis and inflammation. Inhibition of NOS2 may have a therapeutic value in lung cancers with oncogenic KRAS mutations.


Cancer Research | 2011

Coactivation of AKT and β-catenin in mice rapidly induces formation of lipogenic liver tumors.

Jimmy K. Stauffer; Anthony J. Scarzello; Jesper B. Andersen; Rachel L. DeKluyver; Timothy C. Back; Jonathan M. Weiss; Snorri S. Thorgeirsson; Robert H. Wiltrout

Obesity is a risk factor for development of certain cancers but the basis for this risk is unclear. In this study, we developed a novel mouse model that demonstrates directly how lipogenic phenotypes commonly associated with diet-induced metabolic syndromes can influence hepatic cancer development. Activated AKT and β-catenin (AKT/CAT) genes were hydrodynamically codelivered using the Sleeping Beauty transposon to initiate liver tumorigenesis. AKT/CAT and MET/CAT combination induced microscopic tumor foci by 4 weeks, whereas no tumorigenesis resulted from delivery of AKT, MET, or CAT alone. Primary AKT/CAT tumor cells were steatotic (fatty) hepatocellular adenomas which progressed to hepatocellular carcinomas (HCC) upon in vivo passage, whereas primary MET/CAT tumors emerged directly as frank HCC. Conversion of AKT/CAT tumor cells to frank HCC during passage was associated with induction of the human HCC marker α-fetoprotein and the stem cell marker CD133. Using hierarchical clustering and gene set enrichment analysis, we compared the primary murine AKT/CAT and MET/CAT tumors to a panel of 53 human HCCs and determined that these two mouse models could be stratified as distinct subtypes associated in humans with poor clinical prognosis. The chief molecular networks identified in primary and passaged AKT/CAT tumors were steatosis and lipid metabolic pathways, respectively. Our findings show how coactivation of the AKT and CAT pathways in hepatocytes can efficiently model development of a lipogenic tumor phenotype. Furthermore, we believe that our approach could speed the dissection of microenvironmental factors responsible for driving steatotic-neoplastic transformation to frank carcinoma, through genetic modification of existing immunodefined transgenic models.


Developmental Genetics | 1996

Transcriptional control of muscle plasticity: Differential regulation of troponin I genes by electrical activity

Soledad Calvo; Jimmy K. Stauffer; Manabu Nakayama; Andres Buonanno

Plasticity of the skeletal muscle phenotype can result from the selective repression and activation of gene expression in response to innervation patterns. Motoneurons, eliciting different patterns of depolarization, regulate the contractile properties of the myofibers they innervate by selectively activating expression of genes encoding fiber-type-specific (fast vs. slow) contractile proteins. We have analyzed the regulation of the troponin I slow (TnIs) and fast (TnIf) genes as a model to study the molecular mechanisms regulating fiber-type plasticity. We found that expression of the two TnI isoforms is downregulated by denervation. Moreover, TnI expression is upregulated by specific patterns of electrical activity [10 Hz vs. 100 Hz] used to depolarize muscle. We previously isolated the rat TnIs gene and demonstrated that regulatory sequences reside in its upstream region and second intron [Banerjee-Basu S, Buonanno A (1993), Mol Cell Biol 12:5024-5032]. Using transgenic mice, we show that the upstream region of the TnIs gene extending from -949 to +50 is sufficient to confer transcription specifically in slowtwitch muscles. Serial deletions of the TnIs upstream and intronic regions were generated in a CAT reporter vector to delineate transcriptional regulatory elements in transiently transfected Sol8 myotubes. Sequences necessary to confer the highest levels of TnIs transcription mapped to the upstream region between -0.95 and -0.72 kb, and to a 56 bp sequence located in the second intron. Comparison of the at sequence between -0.95 and -0.72 to the human TnIs gene identified a highly homologous region of 128 bp that we named the TnI SURE (slow upstream regulatory element). Alignment of these two SURE sequences with the quail TnI fast intronic regulatory element identified common motifs, namely, two A/T-rich sequences (A/T1 and A/T2) with homology to homeotic protein and MEF2 binding sites, a CACC box, an E box, and a novel motif (GCAGGCA) that we denoted the CAGG box. Mutation of either the A/T2 site, E box, or CAGG box practically abolish the SURE function in transfected myotubes; mutation of the A/T1 and CACC sites has a lesser effect. Using competitive electrophoretic mobility shift assays with nuclear extracts derived from Sol8 myotubes, we demonstrate specific binding to these motifs. The A/T1 and A/T2 sites are shown to form different complexes. The A/T2 site, which bears extensive homology to a MEF2 site, forms complexes that are super shifted by MEF2A antisera and that are competed by a consensus MEF2 site present in the MCK enhancer. Our results demonstrate that the linear arrangement of DNA sequence motifs is conserved in the regulatory elements of the TnI slow and fast genes and suggest that the interaction of multiple protein-DNA complexes are necessary for enhancer function.


Journal of Immunology | 2006

Proteasome Inhibition to Maximize the Apoptotic Potential of Cytokine Therapy for Murine Neuroblastoma Tumors

Tahira Khan; Jimmy K. Stauffer; Rebecca Williams; Julie A. Hixon; Rosalba Salcedo; Erin Lincoln; Timothy C. Back; Douglas Powell; Stephen J. Lockett; Alma C. Arnold; Thomas J. Sayers; Jon M. Wigginton

Human neuroblastomas possess several mechanisms of self-defense that may confer an ability to resist apoptosis and contribute to the observed difficulty in treating these tumors in the clinical setting. These molecular alterations may include defects in proapoptotic genes as well as the overexpression of prosurvival factors, such as Akt among others. As a key regulator of the turnover of proteins that modulate the cell cycle and mechanisms of apoptosis, the proteasome could serve as an important target for the treatment of neuroblastoma. The present studies provide the first evidence that bortezomib, a newly approved inhibitor of proteasome function, inhibits phosphorylation of Akt, induces the translocation of proapoptotic Bid, and potently enhances the apoptosis of murine neuroblastoma tumor cells in vitro. Furthermore, in that inhibitors of the Akt pathway can sensitize otherwise resistant TBJ/Neuro-2a cells to apoptosis induced by IFN-γ plus TNF-α, we hypothesized that bortezomib also could sensitize these cells to IFN-γ plus TNF-α. We demonstrate for the first time that bortezomib not only up-regulates the expression of receptors for IFN-γ and TNF-α on both TBJ neuroblastoma and EOMA endothelial cell lines, but also markedly enhances the sensitivity of these cells to apoptosis induced by IFN-γ plus TNF-α in vitro. Furthermore, bortezomib enhances the in vivo antitumor efficacy of IFN-γ/TNF-α-inducing cytokines, including both IL-2 and IL-12 in mice bearing well-established primary and/or metastatic TBJ neuroblastoma tumors. Collectively, these studies suggest that bortezomib could be used therapeutically to enhance the proapoptotic and overall antitumor activity of systemic cytokine therapy in children with advanced neuroblastoma.

Collaboration


Dive into the Jimmy K. Stauffer's collaboration.

Top Co-Authors

Avatar

Timothy C. Back

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Erin Lincoln

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julie A. Hixon

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Robert H. Wiltrout

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jonathan M. Weiss

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Rosalba Salcedo

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Anthony J. Scarzello

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Qun Jiang

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge