Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jin-A Lee is active.

Publication


Featured researches published by Jin-A Lee.


Current Biology | 2007

ESCRT-III Dysfunction Causes Autophagosome Accumulation and Neurodegeneration

Jin-A Lee; Anne P. Beigneux; S. Tariq Ahmad; Stephen G. Young; Fen-Biao Gao

Defects in the endosomal-lysosomal pathway have been implicated in a number of neurodegenerative disorders. A key step in the endocytic regulation of transmembrane proteins occurs in a subset of late-endosomal compartments known as multivesicular bodies (MVBs), whose formation is controlled by endosomal sorting complex required for transport (ESCRT). The roles of ESCRT in dendritic maintenance and neurodegeneration remain unknown. Here, we show that mSnf7-2, a key component of ESCRT-III, is highly expressed in most mammalian neurons. Loss of mSnf7-2 in mature cortical neurons caused retraction of dendrites and neuronal cell loss. mSnf7-2 binds to CHMP2B, another ESCRT-III subunit, in which a rare dominant mutation is associated with frontotemporal dementia linked to chromosome 3 (FTD3). Ectopic expression of the mutant protein CHMP2B(Intron5) also caused dendritic retraction prior to neurodegeneration. CHMP2B(Intron5) was associated more avidly than CHMP2B(WT) with mSnf7-2, resulting in sequestration of mSnf7-2 in ubiquitin-positive late-endosomal vesicles in cortical neurons. Moreover, loss of mSnf7-2 or CHMP2B(Intron5) expression caused the accumulation of autophagosomes in cortical neurons and flies. These findings indicate that ESCRT-III dysfunction is associated with the autophagy pathway, suggesting a novel neurodegeneration mechanism that may have important implications for understanding FTD and other age-dependent neurodegenerative diseases.


Cell Stem Cell | 2010

MicroRNA-9 Coordinates Proliferation and Migration of Human Embryonic Stem Cell-Derived Neural Progenitors

Celine Delaloy; Lei Liu; Jin-A Lee; Hua Su; Fanxia Shen; Guo-Yuan Yang; William L. Young; Kathy N. Ivey; Fen-Biao Gao

Human pluripotent stem cells offer promise for use in cell-based therapies for brain injury and diseases. However, their cellular behavior is poorly understood. Here we show that the expression of the brain-specific microRNA-9 (miR-9) is turned on in human neural progenitor cells (hNPCs) derived from human embryonic stem cells. Loss of miR-9 suppressed proliferation but promoted migration of hNPCs cultured in vitro. hNPCs without miR-9 activity also showed enhanced migration when transplanted into mouse embryonic brains or adult brains of a mouse model of stroke. These effects were not due to precocious differentiation of hNPCs. One of the key targets directly regulated by miR-9 encodes stathmin, which increases microtubule instability and whose expression in hNPCs correlates inversely with that of miR-9. Partial inhibition of stathmin activity suppressed the effects of miR-9 loss on proliferation and migration of human or embryonic rat neural progenitors. These results identify miR-9 as a novel regulator that coordinates the proliferation and migration of hNPCs.


The Journal of Neuroscience | 2009

Inhibition of autophagy induction delays neuronal cell loss caused by dysfunctional ESCRT-III in frontotemporal dementia

Jin-A Lee; Fen-Biao Gao

Autophagy is a conserved lysosomal protein degradation pathway whose precise roles in age-dependent neurodegenerative diseases remain largely unknown. Here we show that the autophagy inhibitor 3-methyladenine delays neuronal cell loss caused by dysfunctional endosomal sorting complex required for transport III (ESCRT-III), either through loss of its essential component mSnf7-2 or ectopic expression of the disease protein CHMP2BIntron5, which is associated with frontotemporal dementia linked to chromosome 3. Neuronal loss was also delayed by reduced activity of the autophagy genes atg5 and atg7. However, the endosomal accumulation of ubiquitinated proteins induced by dysfunctional ESCRT-III was not significantly affected, further confirming the essential contribution of dysregulated autophagy pathway in neurodegeneration. These findings show that autophagic stress by excess accumulation of autophagosomes is detrimental to neuronal survival under certain neurodegenerative conditions.


Human Molecular Genetics | 2008

The Drosophila homologue of the Angelman syndrome ubiquitin ligase regulates the formation of terminal dendritic branches

Yubing Lu; Fay Wang; Yan Li; Jacob Ferris; Jin-A Lee; Fen-Biao Gao

Angelman syndrome is a severe neurodevelopmental disorder mostly caused by loss-of-function mutations in the maternal allele of UBE3A, a gene that encodes an E3 ubiquitin ligase. Drosophila UBE3A (dUBE3A) is highly homologous to human UBE3A (hUBE3A) at the amino acid sequence level, suggesting their functional conservation. We generated dUBE3A-null mutant fly lines and found that dUBE3A is not essential for viability. However, loss of dUBE3A activity reduced dendritic branching of sensory neurons in the peripheral nervous system and slowed the growth of terminal dendritic fine processes. Several lines of evidence indicated that dUBE3A regulates dendritic morphogenesis in a cell autonomous manner. Moreover, overexpression of dUBE3A also decreased dendritic branching, suggesting that the proper level of dUBE3A is critically important for the normal dendritic patterning. These findings suggest that dendritic pathology may contribute to neurological deficits in patients with Angelman syndrome.


Experimental Neurobiology | 2012

Neuronal Autophagy: A Housekeeper or a Fighter in Neuronal Cell Survival?

Jin-A Lee

Neurons have highly dynamic cellular processes for their proper functions such as cell growth, synaptic formation, or synaptic plasticity by regulating protein synthesis and degradation. Therefore, the quality control of proteins in neurons is essential for their physiology and pathology. Autophagy is a cellular degradation pathway by which cytosolic components are sequestered in autophagosomes and degraded upon their fusion with lysosomal components. Thus, the autophagic pathway may play important roles in neuronal cell survival and neuronal function under physiological condition and pathological conditions. Recent several findings suggest that the loss of basal autophagy or imbalance of autophagic flux leads to neurodegeneration. Autophagosomes accumulate abnormally in affected neurons of several neurodegenerative diseases such as Alzheimers disease (AD), Huntingtons disease (HD), Parkinsons disease (PD), or Frontotemporal dementia (FTD). Thus, the understanding how autophagy is associated with several neurological diseases would be the first step for new therapeutic intervention in neurological disorders. In this review, I will discuss the molecular mechanism of autophagy in neurons and autophagy-associated neurodegenerative diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Genetic screen identifies serpin5 as a regulator of the toll pathway and CHMP2B toxicity associated with frontotemporal dementia

S. Tariq Ahmad; Sean T. Sweeney; Jin-A Lee; Neal T. Sweeney; Fen-Biao Gao

Frontotemporal dementia (FTD) is the most common form of dementia before 60 years of age. Rare pathogenic mutations in CHMP2B, which encodes a component of the endosomal sorting complex required for transport (ESCRT-III), are associated with FTD linked to chromosome 3 (FTD3). Animal models of FTD3 have not yet been reported, and what signaling pathways are misregulated by mutant CHMP2B in vivo is unknown. Here we report the establishment of a Drosophila model of FTD3 and show the genetic interactions between mutant CHMP2B and other components of ESCRT. Through an unbiased genome-wide screen, we identified 29 modifier loci and found that serpin5 (Spn5), a largely uncharacterized serine protease inhibitor, suppresses the melanization phenotype induced by mutant CHMP2B in the fly eye. We also found that Spn5 is a negative regulator of the Toll pathway and functions extracellularly, likely by blocking the proteolytic activation of Spaetzle, the Toll receptor ligand. Moreover, Spn5 inhibited activation of the Toll pathway by mutant CHMP2B. Our findings identify Spn5 as a regulator of the Toll pathway and CHMP2B toxicity and show that the Toll pathway is a major signaling pathway misregulated by mutant CHMP2B in vivo. This fly model will be useful to further dissect genetic pathways that are potentially relevant to the pathogenesis and treatment of FTD.


Proceedings of the National Academy of Sciences of the United States of America | 2012

A cellular model of memory reconsolidation involves reactivation-induced destabilization and restabilization at the sensorimotor synapse in Aplysia

Sue-Hyun Lee; Chuljung Kwak; Jae-Hoon Shim; Jung-Eun Kim; Sun-Lim Choi; Hyoung Kim; Deok-Jin Jang; Jin-A Lee; Kyungmin Lee; Chi-Hoon Lee; Young-Don Lee; Maria Concetta Miniaci; Craig H. Bailey; Eric R. Kandel; Bong-Kiun Kaang

The memory reconsolidation hypothesis suggests that a memory trace becomes labile after retrieval and needs to be reconsolidated before it can be stabilized. However, it is unclear from earlier studies whether the same synapses involved in encoding the memory trace are those that are destabilized and restabilized after the synaptic reactivation that accompanies memory retrieval, or whether new and different synapses are recruited. To address this issue, we studied a simple nonassociative form of memory, long-term sensitization of the gill- and siphon-withdrawal reflex in Aplysia, and its cellular analog, long-term facilitation at the sensory-to-motor neuron synapse. We found that after memory retrieval, behavioral long-term sensitization in Aplysia becomes labile via ubiquitin/proteasome-dependent protein degradation and is reconsolidated by means of de novo protein synthesis. In parallel, we found that on the cellular level, long-term facilitation at the sensory-to-motor neuron synapse that mediates long-term sensitization is also destabilized by protein degradation and is restabilized by protein synthesis after synaptic reactivation, a procedure that parallels memory retrieval or retraining evident on the behavioral level. These results provide direct evidence that the same synapses that store the long-term memory trace encoded by changes in the strength of synaptic connections critical for sensitization are disrupted and reconstructed after signal retrieval.


Neurobiology of Aging | 2014

Autophagy regulates amyotrophic lateral sclerosis-linked fused in sarcoma-positive stress granules in neurons.

Hyun-Hee Ryu; Mi-Hee Jun; Kyung-Jin Min; Deok-Jin Jang; Yong-Seok Lee; Hyong Kyu Kim; Jin-A Lee

Mutations in fused in sarcoma (FUS), a DNA/RNA binding protein, have been associated with familial amyotrophic lateral sclerosis (fALS), which is a fatal neurodegenerative disease that causes progressive muscular weakness and has overlapping clinical and pathologic characteristics with frontotemporal lobar degeneration. However, the role of autophagy in regulation of FUS-positive stress granules (SGs) and aggregates remains unclear. We found that the ALS-linked FUS(R521C) mutation causes accumulation of FUS-positive SGs under oxidative stress, leading to a disruption in the release of FUS from SGs in cultured neurons. Autophagy controls the quality of proteins or organelles; therefore, we checked whether autophagy regulates FUS(R521C)-positive SGs. Interestingly, FUS(R521C)-positive SGs were colocalized to RFP-LC3-positive autophagosomes. Furthermore, FUS-positive SGs accumulated in atg5(-/-) mouse embryonic fibroblasts (MEFs) and in autophagy-deficient neurons. However, FUS(R521C) expression did not significantly impair autophagic degradation. Moreover, autophagy activation with rapamycin reduced the accumulation of FUS-positive SGs in an autophagy-dependent manner. Rapamycin further reduced neurite fragmentation and cell death in neurons expressing mutant FUS under oxidative stress. Overall, we provide a novel pathogenic mechanism of ALS associated with a FUS mutation under oxidative stress, as well as therapeutic insight regarding FUS pathology associated with excessive SGs.


Experimental Neurobiology | 2013

Neuronal Autophagy and Neurodevelopmental Disorders

Kyungmin Lee; Su Kyung Hwang; Jin-A Lee

Neurodevelopmental disorders include a wide range of diseases such as autism spectrum disorders and mental retardation. Mutations in several genes that regulate neural development and synapse function have been identified in neurodevelopmental disorders. Interestingly, some affected genes and pathways in these diseases are associated with the autophagy pathway. Autophagy is a complex, bulky degradative process that involves the sequestration of cellular proteins, RNA, lipids, and cellular organelles into lysosomes. Despite recent progress in elucidating the genetics and molecular pathogenesis of these disorders, little is known about the pathogenic mechanisms and autophagy-related pathways involved in common neurodevelopmental disorders. Therefore, in this review, we focus on the current understanding of neuronal autophagy as well as recent findings on genetics and the roles of autophagy pathway in common neurodevelopmental disorders.


Autophagy | 2008

Roles of ESCRT in autophagy-associated neurodegeneration.

Jin-A Lee; Fen-Biao Gao

Autophagy is a regulated pathway for bulk degradation of cytoplasmic contents and organelles, an important process involved in many physiological and pathological conditions in multiple organs, including the nervous system. It has been proposed that developing autophagosomes fuse with late endosomal compartments before their fusion with lysosomes; however, little is known about the functional relationship between the autophagy and endocytic pathways. In the endosomal-lysosomal pathway, a key step in sorting transmembrane cargo proteins is regulated by multimeric complexes called ESCRT (endosomal sorting complex required for transport). We recently reported that dysfunction of ESCRT-III, either by depletion of its essential subunit mSnf7-2 or by expression of a mutant CHMP2B protein associated with frontotemporal dementia linked to chromosome 3 (FTD3), caused autophagosome accumulation and dendritic retraction before neurodegeneration in cultured mature cortical neurons. This defect is likely a result of an abnormal fusion process between autophagosomes and endosomal compartments or lysosomes. This study suggests that defects in the late steps of the autophagy pathway may contribute to the pathogenesis of FTD and potentially other neurodegenerative diseases. Addendum to: Lee J-A, Beigneux A, Ahmad ST, Young SG, Gao F-B. ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration. Curr Biol 2007; 17:1561-67.

Collaboration


Dive into the Jin-A Lee's collaboration.

Top Co-Authors

Avatar

Deok-Jin Jang

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Yong-Woo Jun

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Fen-Biao Gao

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kun-Hyung Kim

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kyungmin Lee

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Yong Seok Lee

Soonchunhyang University

View shared research outputs
Top Co-Authors

Avatar

Yong-Seok Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge