Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jin H. Song is active.

Publication


Featured researches published by Jin H. Song.


Cancer Research | 2004

TRAIL Inhibits Tumor Growth but Is Nontoxic to Human Hepatocytes in Chimeric Mice

Chunhai Hao; Jin H. Song; Belinda Hsi; Jamie Lewis; Doyoun K. Song; Kenneth C. Petruk; David L.J. Tyrrell; Norman M. Kneteman

Tumor necrosis factor (TNF) family ligand TNF-α and Fas ligand (FasL) can trigger apoptosis in solid tumors, but their clinical usage has been limited by hepatotoxicity. TNF-related apoptosis-inducing ligand (TRAIL) is a newly identified member of the TNF family, and its clinical application currently is under a similar debate. Here, we report a recombinant soluble form of human TRAIL (114 to 281 amino acids) that induces apoptosis in tumor cells but not human hepatocytes. We first isolated human hepatocytes from patients and showed that the human hepatocytes expressed Fas but no TRAIL death receptor DR4 and little DR5 on the cell surface. Antibody cross-linked FasL, but not TRAIL, triggered apoptosis of the human hepatocytes through cleavage of caspases. We then examined TRAIL hepatotoxicity in severe combined immunodeficient/Alb-uPA chimeric mice harboring human hepatocytes. Intravenous injection of FasL, but not TRAIL, caused apoptotic death of human hepatocytes within the chimeric liver, thus killing the mice. Finally, we showed that repeated intraperitoneal injections of TRAIL inhibited intraperitoneal and subcutaneous tumor growth without inducing apoptosis in human hepatocytes in these chimeric mice. The results indicate that the recombinant soluble human TRAIL has a profound apoptotic effect on tumor cells but is nontoxic to human hepatocytes in vitro and in vivo.


Cancer Research | 2007

Lipid Rafts and Nonrafts Mediate Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand–Induced Apoptotic and Nonapoptotic Signals in Non–Small Cell Lung Carcinoma Cells

Jin H. Song; Margaret C.L. Tse; Anita C. Bellail; Surasak Phuphanich; Fadlo R. Khuri; Norman M. Kneteman; Chunhai Hao

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is capable of inducing apoptosis in non-small cell lung carcinoma (NSCLC). However, many of the human NSCLC cell lines are resistant to TRAIL, and TRAIL treatment of the resistant cells leads to the activation of nuclear factor-kappaB (NF-kappaB) and extracellular signal-regulated kinase 1/2 (ERK1/2). TRAIL can induce apoptosis in TRAIL-sensitive NSCLC cells through the induction of death-inducing signaling complex (DISC) assembly in lipid rafts of plasma membrane. In the DISC, caspase-8 is cleaved and initiates TRAIL-induced apoptosis. In contrast, TRAIL-DISC assembly in the nonraft phase of the plasma membrane leads to the inhibition of caspase-8 cleavage and NF-kappaB and ERK1/2 activation in TRAIL-resistant NSCLC cells. Receptor-interacting protein (RIP) and cellular Fas-associated death domain-like interleukin-1beta-converting enzyme-inhibitory protein (c-FLIP) mediates the DISC assembly in nonrafts and selective knockdown of either RIP or c-FLIP with interfering RNA redistributes the DISC from nonrafts to lipid rafts, thereby switching the DISC signals from NF-kappaB and ERK1/2 activation to caspase-8-initiated apoptosis. Chemotherapeutic agents inhibit c-FLIP expression, thereby enhancing the DISC assembly in lipid rafts for caspase-8-initiated apoptosis. These studies indicate that RIP and c-FLIP-mediated assembly of the DISC in nonrafts is a critical upstream event in TRAIL resistance and thus targeting of either RIP or c-FLIP may lead to the development of novel therapeutic strategies that can overcome TRAIL resistance in human NSCLC.


The Journal of Neuroscience | 2006

Human Astrocytes Are Resistant to Fas Ligand and Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand-Induced Apoptosis

Jin H. Song; Anita C. Bellail; Margaret C.L. Tse; V. Wee Yong; Chunhai Hao

Human astrocytes express Fas yet are resistant to Fas-induced apoptosis. Here, we report that calcium/calmodulin-dependent protein kinase II (CaMKII) is constitutively activated in human astrocytes and protects the cells from apoptotic stimulation by Fas agonist. Once stimulated, Fas recruits Fas-associated death domain and caspase-8 for the assembly of the death-inducing signaling complex (DISC); however, caspase-8 cleavage is inhibited in the DISC. Inhibition of CaMKII kinase activity inhibits the expression of phosphoprotein enriched astrocytes-15 kDa/phosphoprotein enriched in diabetes (PEA-15/PED) and cellular Fas-associated death domain-like interleukin-1β-converting enzyme-inhibitory protein (c-FLIP), thus releasing their inhibition of caspase-8 cleavage. Inhibition of PEA-15/PED or c-FLIP by small interfering RNA sensitizes human astrocytes to Fas-induced apoptosis. In contrast, inhibition of CaMKII, PEA-15, or c-FLIP does not affect the sensitivity of human astrocytes to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). TRAIL death receptors (DR4, DR5) are weakly expressed at mRNA, protein, and cell surface levels and thus fail to mediate the assembly of the DISC in human astrocytes. Overexpression of DR5 restores TRAIL signaling pathways and sensitizes the human astrocytes to TRAIL-induced apoptosis if CaMKII kinase activity or expression of PEA-15 and c-FLIP is inhibited; the results suggest that CaMKII-mediated pathways prevent TRAIL-induced apoptosis in human astrocytes under conditions in which TRAIL death receptors are upregulated. This study has therefore identified the molecular mechanisms that protect normal human astrocytes from apoptosis induced by Fas ligand and TRAIL.


Blood | 2010

A small molecule inhibitor of Pim protein kinases blocks the growth of precursor T-cell lymphoblastic leukemia/lymphoma

Ying Wei Lin; Zanna Beharry; Elizabeth G. Hill; Jin H. Song; Wenxue Wang; Zuping Xia; Zhenhua Zhang; Peter D. Aplan; Charles D. Smith; Andrew S. Kraft

The serine/threonine Pim kinases are up-regulated in specific hematologic neoplasms, and play an important role in key signal transduction pathways, including those regulated by MYC, MYCN, FLT3-ITD, BCR-ABL, HOXA9, and EWS fusions. We demonstrate that SMI-4a, a novel benzylidene-thiazolidine-2, 4-dione small molecule inhibitor of the Pim kinases, kills a wide range of both myeloid and lymphoid cell lines with precursor T-cell lymphoblastic leukemia/lymphoma (pre-T-LBL/T-ALL) being highly sensitive. Incubation of pre-T-LBL cells with SMI-4a induced G1 phase cell-cycle arrest secondary to a dose-dependent induction of p27(Kip1), apoptosis through the mitochondrial pathway, and inhibition of the mammalian target of rapamycin C1 (mTORC1) pathway based on decreases in phospho-p70 S6K and phospho-4E-BP1, 2 substrates of this enzyme. In addition, treatment of these cells with SMI-4a was found to induce phosphorylation of extracellular signal-related kinase1/2 (ERK1/2), and the combination of SMI-4a and a mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor was highly synergistic in killing pre-T-LBL cells. In immunodeficient mice carrying subcutaneous pre-T-LBL tumors, treatment twice daily with SMI-4a caused a significant delay in the tumor growth without any change in the weight, blood counts, or chemistries. Our data suggest that inhibition of the Pim protein kinases may be developed as a therapeutic strategy for the treatment of pre-T-LBL.


Cell Death & Differentiation | 2006

Cyclin-dependent kinase-5 prevents neuronal apoptosis through ERK-mediated upregulation of Bcl-2

C X Wang; Jin H. Song; Doyoun K. Song; V W Yong; A Shuaib; Chunhai Hao

Cyclin-dependent kinase-5 (Cdk5) is required for neuronal survival, but its targets in the apoptotic pathways remain unknown. Here, we show that Cdk5 kinase activity prevents neuronal apoptosis through the upregulation of Bcl-2. Treatment of SH-SY5Y cells with retinoid acid (RA) and brain-derived neurotrophic factor (BDNF) generates differentiated neuron-like cells. DNA damage triggers apoptosis in the undifferentiated cells through mitochondrial pathway; however, RA/BDNF treatment results in Bcl-2 upregulation and inhibition of the mitochondrial pathway in the differentiated cells. RA/BDNF treatment activates Cdk5-mediated PI3K/Akt and ERK pathways. Inhibition of Cdk5 inhibits PI3K/Akt and ERK phosphorylation and Bcl-2 expression, and thus sensitizes the differentiated cells to DNA-damage. Inhibition of ERK, but not PI3K/Akt, abrogates Cdk5-medidated Bcl-2 upregulation and the protection of the differentiated cells. This study suggests that ERK-mediated Bcl-2 upregulation contributes to BDNF-induced Cdk5-mediated neuronal survival.


Atherosclerosis | 2001

Enhanced level of n-3 fatty acid in membrane phospholipids induces lipid peroxidation in rats fed dietary docosahexaenoic acid oil

Jin H. Song; Teruo Miyazawa

The effect of dietary docosahexaenoic acid (DHA, 22:6n-3) oil with different lipid types on lipid peroxidation was studied in rats. Each group of male Sprague-Dawley rats was pair fed 15% (w/w) of either DHA-triglycerides (DHA-TG), DHA-ethyl esters (DHA-EE) or DHA-phospholipids (DHA-PL) for up to 3 weeks. The palm oil (supplemented with 20% soybean oil) diet without DHA was fed as the control. Dietary DHA oils lowered plasma triglyceride concentrations in rats fed DHA-TG (by 30%), DHA-EE (by 45%) and DHA-PL (by 27%), compared to control. The incorporation of dietary DHA into plasma and liver phospholipids was more pronounced in the DHA-TG and DHA-EE group than in the DHA-PL group. However, DHA oil intake negatively influenced lipid peroxidation in both plasma and liver. Phospholipid peroxidation in plasma and liver was significantly higher than control in rats fed DHA-TG or DHA-EE, but not DHA-PL. These results are consistent with increased thiobarbituric acid reactive substances (TBARS) and decreased alpha-tocopherol levels in plasma and liver. In addition, liver microsomes from rats of each group were exposed to a mixture of chelated iron (Fe(3+)/ADP) and NADPH to determine the rate of peroxidative damage. During NADPH-dependent peroxidation of microsomes, the accumulation of phospholipid hydroperoxides, as well as TBARS, were elevated and alpha-tocopherol levels were significantly exhausted in DHA-TG and DHA-EE groups. During microsomal lipid peroxidation, there was a greater loss of n-3 fatty acids (mainly DHA) than of n-6 fatty acids, including arachidonic acid (20:4n-6). These results indicate that polyunsaturation of n-3 fatty acids is the most important target for lipid peroxidation. This suggests that the ingestion of large amounts of DHA oil enhances lipid peroxidation in the target membranes where greater amounts of n-3 fatty acids are incorporated, thereby increasing the peroxidizability and possibly accelerating the atherosclerotic process.


Journal of Biological Chemistry | 2005

Interferon γ Induces Neurite Outgrowth by Up-regulation of p35 Neuron-specific Cyclin-dependent Kinase 5 Activator via Activation of ERK1/2 Pathway

Jin H. Song; Chen Xu Wang; Doyoun K. Song; Peng Wang; Ashfaq Shuaib; Chunhai Hao

Interferon gamma (IFN-γ) is a cytokine predominantly involved in antiproliferative and antiviral responses, immune surveillance, and tumor suppression. However, it has been shown that IFN-γ is also involved in central nervous system development. Here we studied the underlying mechanism for IFN-γ-induced neuronal differentiation using the human neuroblastoma Paju cell line. Our results indicate that IFN-γ treatment led to neurite outgrowth followed by growth arrest in the G1 phase of the cell cycle. IFN-γ induced ERK1/2 phosphorylation and subsequently the transcription factor early gene response 1, which in turn up-regulated p35 expression and increased cyclin-dependent kinase 5 (Cdk5) activity. IFN-γ-induced neurite outgrowth was abolished by the treatment of MEK1/2 kinase inhibitors, such as U0126 and PD98059, which inhibit the ERK1/2 activation and subsequently prevent the up-regulation of p35 expression and Cdk5 activity. In agreement with the role of p35-Cdk5 in neuronal differentiation, small interfering RNA targeting Cdk5 abrogate the IFN-γ-induced neurite outgrowth. Together, these results demonstrate for the first time that IFN-γ-triggered neuronal differentiation mediated through the up-regulation of p35-associated Cdk5 depends on the activation of the ERK1/2 pathway. Therefore, the present study suggests that IFN-γ is not only involved in tumorigenicity but also involved in neurogenesis by regulating cell proliferation and differentiation.


Brain Pathology | 2006

TRAIL Triggers Apoptosis in Human Malignant Glioma Cells Through Extrinsic and Intrinsic Pathways

Jin H. Song; Doyoun K. Song; Beata Pyrzynska; Kenneth C. Petruk; Erwin G. Van Meir; Chunhai Hao

Many malignant glioma cells express death receptors for tumor necrosis factor‐related apoptosis‐inducing ligand (TRAIL), yet some of these cells are resistant to TRAIL. Here, we examined signaling events in TRAIL‐induced apoptosis and searched for therapeutic agents that could overcome TRAIL resistance in glioma cells. TRAIL induced apoptosis through death receptor 5 (DR5) and was mediated by caspase‐8‐initiated extrinsic and intrinsic mitochondrial pathways in sensitive glioma cell lines. TRAIL also triggered apoptosis in resistant glioma cell lines through the same pathways, but only if the cells were pretreated with chemotherapeutic agents, cisplatin, camptothecin and etoposide. Previous studies suggested that this was due to an increase in DR5 expression in wild‐type TP53 cells, but this mechanism did not account for cells with mutant TP53. Here, we show that a more general effect of these agents is to down regulate caspase‐8 inhibitor c‐FLIPS (the short form of cellular Fasassociated death domain‐like interleukin‐1‐converting enzyme‐inhibitory protein) and up‐regulate Bak, a pro‐apoptotic Bcl‐2 family member, independently of cells TP53 status. Furthermore, we showed that TRAIL alone or in combination with chemotherapeutic agents, induced apoptosis in primary tumor cultures from patients with malignant gliomas, reinforcing the potential of TRAIL as an effective therapeutic agent for malignant gliomas.


Brain Research | 2001

Oxidative stress induced by ascorbate causes neuronal damage in an in vitro system

Jin H. Song; Seon H. Shin; Gregory M. Ross

Of particular physiological interest, ascorbate, the ionized form of ascorbic acid, possesses strong reducing properties. However, it has been shown to induce oxidative stress and lead to apoptosis under certain experimental conditions. Ascorbate in the brain is released during hypoxia, including stroke, and is subsequently oxidized in plasma. The oxidized product (dehydroascorbate) is transported into neurons via a glucose transporter (GLUT) during a reperfusion period. The dehydroascorbate taken up by cells is reduced to ascorbate by both enzymatic and non-enzymatic processes, and the ascorbate is stored in cells. This reduction process causes an oxidative stress, due to coupling of redox reactions, which can induce cellular damage and trigger apoptosis. Ascorbate treatment decreased cellular glutathione (GSH) content, and increased the rates of lipid peroxide production in rat cortical slices. Wortmannin, a specific inhibitor of phosphatidylinositol (PI)-3-kinase (a key enzyme in GLUT translocation), prevented the ascorbate induced-decrease of GSH content, and suppressed ascorbate-induced lipid peroxide production. However, wortmannin was ineffective in reducing hydrogen peroxide (H(2)O(2))-induced oxidative stress. The oxidative stress caused ceramide accumulation, which was proportionally changed with lipid peroxides when the cortical slices were treated with ascorbate. These differential effects support the hypothesis that GLUT efficiently transports the dehydroascorbate into neurons, causing oxidative stress.


Journal of Vascular Research | 2005

TRAIL-Induced Apoptosis in Human Vascular Endothelium Is Regulated by Phosphatidylinositol 3-Kinase/Akt through the Short Form of Cellular FLIP and Bcl-2

Salima J. Alladina; Jin H. Song; Sandra T. Davidge; Chunhai Hao; Alexander Easton

Background: Apoptosis of vascular endothelial cells plays a central role in angiogenesis and atherosclerosis. This study investigates the molecular mechanisms of endothelial apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) following inhibition of phosphatidylinositol 3-kinase (PI3K). It examines downstream regulation and activation of the extrinsic and intrinsic pathways. Methods and Results: By flow cytometry, TRAIL receptors 2 and 3 were present to a greater extent than receptors 1 and 4. TRAIL reduced cell numbers in combination with the PI3K inhibitor LY 294002. TRAIL (100 ng/ml) with LY 294002 (20 µmol/l) activated the extrinsic pathway, causing progressive cleavage of caspase-8 and caspase-3. Activation of the intrinsic pathway proceeded by release of mitochondrial factors Smac/DIABLO and cytochrome c, and caspase-9 cleavage. LY 294002 reduced phosphorylated Akt (p-Akt), with early loss of the short form of cellular FLIP (c-FLIPS) and concurrent reduction of Bcl-2. Treatment with small interfering RNA against PI3K also reduced c-FLIPS and Bcl-2, and cotreatment with TRAIL triggered caspase-3 cleavage. Conclusions: This study details the molecular regulation of TRAIL-induced apoptosis in vascular endothelium. Inhibition of PI3K reduces p-Akt, with concurrent reductions in c-FLIPS and Bcl-2, and so renders endothelium sensitive to TRAIL-induced apoptosis through the extrinsic and intrinsic pathways.

Collaboration


Dive into the Jin H. Song's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ningfei An

Medical University of South Carolina

View shared research outputs
Researchain Logo
Decentralizing Knowledge