Anita C. Bellail
Emory University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anita C. Bellail.
Neuro-oncology | 2005
Daniel J. Brat; Anita C. Bellail; Erwin G. Van Meir
Interleukin-8 (IL-8, or CXCL8), which is a chemokine with a defining CXC amino acid motif that was initially characterized for its leukocyte chemotactic activity, is now known to possess tumorigenic and proangiogenic properties as well. In human gliomas, IL-8 is expressed and secreted at high levels both in vitro and in vivo, and recent experiments suggest it is critical to glial tumor neovascularity and progression. Levels of IL-8 correlate with histologic grade in glial neoplasms, and the most malignant form, glioblastoma, shows the highest expression in pseudopalisading cells around necrosis, suggesting that hypoxia/anoxia may stimulate expression. In addition to hypoxia/anoxia stimulation, increased IL-8 in gliomas occurs in response to Fas ligation, death receptor activation, cytosolic Ca(2+), TNF-alpha, IL-1, and other cytokines and various cellular stresses. The IL-8 promoter contains binding sites for the transcription factors NF-kappaB, AP-1, and C-EBP/NF-IL-6, among others. AP-1 has been shown to mediate IL-8 upregulation by anoxia in gliomas. The potential tumor suppressor ING4 was recently shown to be a critical regulator of NF-kappaB-mediated IL-8 transcription and subsequent angiogenesis in gliomas. The IL-8 receptors that could contribute to IL-8-mediated tumorigenic and angiogenic responses include CXCR1 and CXCR2, both of which are G-protein coupled, and the Duffy antigen receptor for cytokines, which has no defined intracellular signaling capabilities. The proangiogenic activity of IL-8 occurs predominantly following binding to CXCR2, but CXCR1 appears to contribute as well through independent, small-GTPase activity. A precise definition of the mechanisms by which IL-8 exerts its proangiogenic functions requires further study for the development of effective IL-8-targeted therapies.
Reviews on Recent Clinical Trials | 2009
Anita C. Bellail; Ling Qi; Patrick Mulligan; Vaninder S. Chhabra; Chunhai Hao
Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) is normally expressed in the human immune system and plays a critical role in antitumor immunity. TRAIL interacts with the death receptors, DR4 and DR5, and activates intracellular apoptotic pathway in cancer cells. This discovery has resulted in a rapid development of cancer therapeutic agents that can activate this apoptotic pathway. These therapeutic agents include recombinant human TRAIL (rhTRAIL) and its agonistic monoclonal antibody (MAb) against DR4 and DR5. Phase I trials have established the safety and tolerability of these TRAIL agonists in patients. Phase II trials are currently evaluating the therapeutic efficacy of TRAIL agonists as single agents or in combination with established cancer therapeutics. This review outlines the advances and the challenges in the development of these TRAIL agonists as effective clinical cancer therapeutics.
Cancer Research | 2007
Jin H. Song; Margaret C.L. Tse; Anita C. Bellail; Surasak Phuphanich; Fadlo R. Khuri; Norman M. Kneteman; Chunhai Hao
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is capable of inducing apoptosis in non-small cell lung carcinoma (NSCLC). However, many of the human NSCLC cell lines are resistant to TRAIL, and TRAIL treatment of the resistant cells leads to the activation of nuclear factor-kappaB (NF-kappaB) and extracellular signal-regulated kinase 1/2 (ERK1/2). TRAIL can induce apoptosis in TRAIL-sensitive NSCLC cells through the induction of death-inducing signaling complex (DISC) assembly in lipid rafts of plasma membrane. In the DISC, caspase-8 is cleaved and initiates TRAIL-induced apoptosis. In contrast, TRAIL-DISC assembly in the nonraft phase of the plasma membrane leads to the inhibition of caspase-8 cleavage and NF-kappaB and ERK1/2 activation in TRAIL-resistant NSCLC cells. Receptor-interacting protein (RIP) and cellular Fas-associated death domain-like interleukin-1beta-converting enzyme-inhibitory protein (c-FLIP) mediates the DISC assembly in nonrafts and selective knockdown of either RIP or c-FLIP with interfering RNA redistributes the DISC from nonrafts to lipid rafts, thereby switching the DISC signals from NF-kappaB and ERK1/2 activation to caspase-8-initiated apoptosis. Chemotherapeutic agents inhibit c-FLIP expression, thereby enhancing the DISC assembly in lipid rafts for caspase-8-initiated apoptosis. These studies indicate that RIP and c-FLIP-mediated assembly of the DISC in nonrafts is a critical upstream event in TRAIL resistance and thus targeting of either RIP or c-FLIP may lead to the development of novel therapeutic strategies that can overcome TRAIL resistance in human NSCLC.
The Journal of Neuroscience | 2006
Jin H. Song; Anita C. Bellail; Margaret C.L. Tse; V. Wee Yong; Chunhai Hao
Human astrocytes express Fas yet are resistant to Fas-induced apoptosis. Here, we report that calcium/calmodulin-dependent protein kinase II (CaMKII) is constitutively activated in human astrocytes and protects the cells from apoptotic stimulation by Fas agonist. Once stimulated, Fas recruits Fas-associated death domain and caspase-8 for the assembly of the death-inducing signaling complex (DISC); however, caspase-8 cleavage is inhibited in the DISC. Inhibition of CaMKII kinase activity inhibits the expression of phosphoprotein enriched astrocytes-15 kDa/phosphoprotein enriched in diabetes (PEA-15/PED) and cellular Fas-associated death domain-like interleukin-1β-converting enzyme-inhibitory protein (c-FLIP), thus releasing their inhibition of caspase-8 cleavage. Inhibition of PEA-15/PED or c-FLIP by small interfering RNA sensitizes human astrocytes to Fas-induced apoptosis. In contrast, inhibition of CaMKII, PEA-15, or c-FLIP does not affect the sensitivity of human astrocytes to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). TRAIL death receptors (DR4, DR5) are weakly expressed at mRNA, protein, and cell surface levels and thus fail to mediate the assembly of the DISC in human astrocytes. Overexpression of DR5 restores TRAIL signaling pathways and sensitizes the human astrocytes to TRAIL-induced apoptosis if CaMKII kinase activity or expression of PEA-15 and c-FLIP is inhibited; the results suggest that CaMKII-mediated pathways prevent TRAIL-induced apoptosis in human astrocytes under conditions in which TRAIL death receptors are upregulated. This study has therefore identified the molecular mechanisms that protect normal human astrocytes from apoptosis induced by Fas ligand and TRAIL.
Cancer Discovery | 2012
Anita C. Bellail; Jeffrey J. Olson; Xiaolu Yang; Zhijian J. Chen; Chunhai Hao
UNLABELLED The TNF-related apoptosis-inducing ligand (TRAIL) apoptotic pathway has emerged as a therapeutic target for the treatment of cancer. However, clinical trials have proven that the vast majority of human cancers are resistant to TRAIL apoptotic pathway-targeted therapies. We show that A20-mediated ubiquitination inhibits caspase-8 cleavage and TRAIL-induced apoptosis in glioblastoma through 2 signaling complexes. A20 is highly expressed in glioblastomas and, together with the death receptor 5 and receptor-interacting protein 1, forms a plasma membrane-bound preligand assembly complex under physiologic conditions. Treatment with TRAIL leads to the recruitment of caspase-8 to the plasma membrane-bound preligand assembly complex for the assembly of a death-inducing signaling complex. In the death-inducing signaling complex, the C-terminal zinc finger (Znf) domain of the A20 ubiquitin ligase mediates receptor-interacting protein 1 polyubiquitination through lysine-63-linked polyubiquitin chains, which bind to the caspase-8 protease domain and inhibit caspase-8 dimerization, cleavage, and the initiation of TRAIL-induced apoptosis in glioblastoma-derived cell lines and tumor-initiating cells. SIGNIFICANCE These results identify A20 E3 ligase as a therapeutic target whose inhibition can overcome TNF-related apoptosis-inducing ligand resistance in glioblastoma and thus have an impact on ongoing clinical trials of TNF-related apoptosis-inducing ligand-targeted combination cancer therapies.
Journal of Cellular and Molecular Medicine | 2010
Anita C. Bellail; Margaret C.L. Tse; Jin H. Song; Surasak Phuphanich; Jeffrey J. Olson; Shi-Yong Sun; Chunhai Hao
To explore the molecular mechanisms by which glioblastomas are resistant to tumour necrosis factor‐related apoptosis‐inducing ligand (TRAIL), we examined TRAIL signalling pathways in the tumours. TRAIL has four membrane‐anchored receptors, death receptor 4/5 (DR4/5) and decoy receptor 1/2 (DcR1/2). Of these receptors, only DR5 was expressed consistently in glioblastoma cell lines and tumour tissues, ruling out the role of DcR1/2 in TRAIL resistance. Upon TRAIL binding, DR5 was homotrimerized and recruited Fas‐associated death domain (FADD) and caspase‐8 for the assembly of death‐inducing signalling complex (DISC) in the lipid rafts of the plasma membrane. In the DISC, caspase‐8 was cleaved and initiated apoptosis by cleaving downstream caspases in TRAIL‐sensitive glioblastoma cells. In TRAIL‐resistant cells, however, DR5‐mediated DISC was modified by receptor‐interacting protein (RIP), cellular FADD‐like interleukin‐1β‐converting enzyme inhibitory protein (c‐FLIP) and phosphoprotein enriched in diabetes or in astrocyte‐15 (PED/PEA‐15). This DISC modification occurred in the non‐raft fractions of the plasma membrane and resulted in the inhibition of caspase‐8 cleavage and activation of nuclear factor‐κB (NF‐κB). Treatment of resistant cells with parthenolide, an inhibitor of inhibitor of κB (I‐κB), eliminated TRAIL‐induced NF‐κB activity but not TRAIL resistance. In contrast, however, targeting of RIP, c‐FLIP or PED/PEA‐15 with small interfering RNA (siRNA) led to the redistribution of the DISC from non‐rafts to lipid rafts and eliminated the inhibition of caspase‐8 cleavage and thereby TRAIL resistance. Taken together, this study indicates that the DISC modification by RIP, c‐FLIP and PED/PEA‐15 is the most upstream event in TRAIL resistance in glioblastomas.
Molecular Cancer Therapeutics | 2011
Jianfeng Lu; Donna McEachern; Haiying Sun; Longchuan Bai; Yuefeng Peng; Su Qiu; Rebecca Miller; Jinhui Liao; Han Yi; Meilan Liu; Anita C. Bellail; Chunhai Hao; Shi-Yong Sun; Adrian T. Ting; Shaomeng Wang
Smac mimetics are being developed as a new class of anticancer therapies. Because the single-agent activity of Smac mimetics is very limited, rational combinations represent a viable strategy for their clinical development. The combination of Smac mimetics with TNF-related apoptosis inducing ligand (TRAIL) may be particularly attractive because of the low toxicity of TRAIL to normal cells and the synergistic antitumor activity observed for the combination. In this study, we have investigated the combination synergy between TRAIL and a potent Smac mimetic, SM-164, in vitro and in vivo and the underlying molecular mechanism of action for the synergy. Our study shows that SM-164 is highly synergistic with TRAIL in vitro in both TRAIL-sensitive and TRAIL-resistant cancer cell lines of breast, prostate, and colon cancer. Furthermore, the combination of SM-164 with TRAIL induces rapid tumor regression in vivo in a breast cancer xenograft model in which either agent is ineffective. Our data show that X-linked IAP (XIAP) and cellular IAP 1 (cIAP1), but not cIAP2, work in concert to attenuate the activity of TRAIL; SM-164 strongly enhances TRAIL activity by concurrently targeting XIAP and cIAP1. Moreover, although RIP1 plays a minimal role in the activity of TRAIL as a single agent, it is required for the synergistic interaction between TRAIL and SM-164. This study provides a strong rationale to develop the combination of SM-164 and TRAIL as a new therapeutic strategy for the treatment of human cancer. Mol Cancer Ther; 10(5); 902–14. ©2011 AACR.
Cancer Investigation | 2011
Lijuan Ding; Changji Yuan; Feng Wei; Guangyi Wang; Jing Zhang; Anita C. Bellail; Zhaobin Zhang; Jeffrey J. Olson; Chunhai Hao
Glioblastoma-derived stem cells (GSCs) are responsible for the cancer resistance to therapies. We show here that GSC-enriched neurospheres are resistant to the treatment of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) due to the insufficient expression of the death receptor DR4 and DR5 and the overexpression of cellular Fas-associated death domain-like interleukin-1β-converting enzyme-inhibitory protein (c-FLIP). However, treatment with cisplatin leads to the upregulation of DR5 and downregulation of c-FLIP and restores TRAIL apoptotic pathway in the neurospheres. This study suggests that the combined treatment of TRAIL and cisplatin can induce apoptosis in GSCs and thus provide an effective treatment of glioblastomas.
Nature Communications | 2014
Anita C. Bellail; Jeffrey J. Olson; Chunhai Hao
Ubiquitination governs oscillation of cyclin-dependent kinase (CDK) activity through a periodic degradation of cyclins for orderly cell cycle progression; however, the mechanism that maintains the constant CDK protein levels throughout the cell cycle remains unclear. Here we show that CDK6 is modified by small ubiquitin-like modifier-1 (SUMO1) in glioblastoma, and that CDK6 sumoylation stabilizes the protein and drives the cell cycle for the cancer development and progression. CDK6 is also a substrate of ubiquitin; however, CDK6 sumoylation at Lys 216 blocks its ubiquitination at Lys 147 and inhibits the ubiquitin-mediated CDK6 degradation. Throughout the cell cycle, CDK1 phosphorylates the SUMO-specific enzyme, ubiquitin-conjugating enzyme9 (UBC9) that in turn mediates CDK6 sumoylation during mitosis; CDK6 remain sumoylated in G1 phase and drives the cell cycle through G1/S transition. Thus, SUMO1-CDK6 conjugation constitutes a mechanism of cell cycle control and inhibition of this sumoylation pathway may provide a strategy for treatment of glioblastoma.
Apoptosis | 2011
Ling Qi; Anita C. Bellail; Michael R. Rossi; Zhaobin Zhang; Hui Pang; Stephen B. Hunter; Cynthia Cohen; Carlos S. Moreno; Jeffrey J. Olson; Shibo Li; Chunhai Hao
Recent studies suggest that cancer stem cells (CSCs) are responsible for cancer resistance to therapies. We therefore investigated how glioblastoma-derived CSCs respond to the treatment of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Neurospheres were generated from glioblastomas, characterized for CSC properties including self-renewal, cell differentiation and xenograft formation capacity, and analyzed for TRAIL-induced apoptosis, CASP8 genomic status, and caspase-8 protein expression. The neurosphere NSC326 was sensitive to TRAIL-induced apoptosis as evidenced by cell death and caspase-8, -3, and -7 enzymatic activities. In contrast, however, the neurosphere NSC189 was TRAIL-resistant. G-banding analysis identified five chromosomally distinguishable cell populations in the neurospheres. Fluorescence in situ hybridization revealed the variation of chromosome 2 copy number in these populations and the loss of CASP8 locus in 2q33-34 region in a small set of cell populations in the neurosphere. Immunohistochemistry of NSC189 cell blocks revealed the lack of caspase-8 protein in a subset of neurosphere cells. Western blotting and immunohistochemistry of human glioblastoma tumors demonstrated the expression of caspase-8 protein in the vast majority of the tumors as compared to normal human brain tissues that lack the caspase-8 expression. This study shows heterogeneity of glioblastomas and derived CSCs in the genomic status of CASP8, expression of caspase-8, and thus responsiveness to TRAIL-induced apoptosis. Clinic trials may consider genomic analysis of the cancer tissue to identify the genomic loss of CASP8 and use it as a genomic marker to predict the resistance of glioblastomas to TRAIL apoptosis pathway-targeted therapies.