Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jin Q. Cheng is active.

Publication


Featured researches published by Jin Q. Cheng.


Molecular and Cellular Biology | 2008

MicroRNA-155 is regulated by the transforming growth factor β/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA

William Kong; Hua Yang; Lili He; Jian Jun Zhao; Domenico Coppola; William S. Dalton; Jin Q. Cheng

ABSTRACT Transforming growth factor β (TGF-β) signaling facilitates metastasis in advanced malignancy. While a number of protein-encoding genes are known to be involved in this process, information on the role of microRNAs (miRNAs) in TGF-β-induced cell migration and invasion is still limited. By hybridizing a 515-miRNA oligonucleotide-based microarray library, a total of 28 miRNAs were found to be significantly deregulated in TGF-β-treated normal murine mammary gland (NMuMG) epithelial cells but not Smad4 knockdown NMuMG cells. Among upregulated miRNAs, miR-155 was the most significantly elevated miRNA. TGF-β induces miR-155 expression and promoter activity through Smad4. The knockdown of miR-155 suppressed TGF-β-induced epithelial-mesenchymal transition (EMT) and tight junction dissolution, as well as cell migration and invasion. Further, the ectopic expression of miR-155 reduced RhoA protein and disrupted tight junction formation. Reintroducing RhoA cDNA without the 3′ untranslated region largely reversed the phenotype induced by miR-155 and TGF-β. In addition, elevated levels of miR-155 were frequently detected in invasive breast cancer tissues. These data suggest that miR-155 may play an important role in TGF-β-induced EMT and cell migration and invasion by targeting RhoA and indicate that it is a potential therapeutic target for breast cancer intervention.


Journal of Biological Chemistry | 2008

MicroRNA-221/222 negatively regulates estrogen receptor α and is associated with tamoxifen resistance in breast cancer.

Jian Jun Zhao; Jianhong Lin; Hua Yang; William Kong; Lili He; Xu Ma; Domenico Coppola; Jin Q. Cheng

A search for regulators of estrogen receptor α (ERα) expression has yielded a set of microRNAs (miRNAs) for which expression is specifically elevated in ERα-negative breast cancer. Here we show distinct expression of a panel of miRNAs between ERα-positive and ERα-negative breast cancer cell lines and primary tumors. Of the elevated miRNAs in ERα-negative cells, miR-221 and miR-222 directly interact with the 3′-untranslated region of ERα. Ectopic expression of miR-221 and miR-222 in MCF-7 and T47D cells resulted in a decrease in expression of ERα protein but not mRNA, whereas knockdown of miR-221 and miR-222 partially restored ERα in ERα protein-negative/mRNA-positive cells. Notably, miR-221- and/or miR-222-transfected MCF-7 and T47D cells became resistant to tamoxifen compared with vector-treated cells. Furthermore, knockdown of miR-221 and/or miR-222 sensitized MDA-MB-468 cells to tamoxifen-induced cell growth arrest and apoptosis. These findings indicate that miR-221 and miR-222 play a significant role in the regulation of ERα expression at the protein level and could be potential targets for restoring ERα expression and responding to antiestrogen therapy in a subset of breast cancers.


American Journal of Pathology | 2001

AKT1/PKBα Kinase Is Frequently Elevated in Human Cancers and Its Constitutive Activation Is Required for Oncogenic Transformation in NIH3T3 Cells

Mei Sun; Gen Wang; June E. Paciga; Richard I. Feldman; Zengqiang Yuan; Xiao-ling Ma; Sue A. Shelley; Richard Jove; Philip N. Tsichlis; Santo V. Nicosia; Jin Q. Cheng

Extensive studies have demonstrated that the Akt/AKT1 pathway is essential for cell survival and inhibition of apoptosis; however, alterations of Akt/AKT1 in human primary tumors have not been well documented. In this report, significantly increased AKT1 kinase activity was detected in primary carcinomas of prostate (16 of 30), breast (19 of 50), and ovary (11 of 28). The results were confirmed by Western blot and immunohistochemical staining analyses with phospho-Ser473 Akt antibody. The majority of AKT1-activated tumors are high grade and stage III/lV (13 of 16 prostate, 15 of 19 breast, and 8 of 11 ovarian carcinomas). Previous studies showed that wild-type AKT1 was unable to transform NIH3T3 cells. To demonstrate the biological significance of AKT1 activation in human cancer, constitutively activated AKT1 (Myr-Akt) was introduced into NIH3T3 cells. Overexpression of Myr-Akt in the stably transfected cells resulted in malignant phenotype, as determined by growth in soft agar and tumor formation in nude mice. These data indicate that AKT1 kinase, which is frequently activated in human cancer, is a determinant in oncogenesis and a potential target for cancer intervention.


Cancer Research | 2004

Akt/protein kinase B signaling inhibitor-2, a selective small molecule inhibitor of Akt signaling with antitumor activity in cancer cells overexpressing Akt

Lin Yang; Han C. Dan; Mei Sun; Qiyuan Liu; Xia Meng Sun; Richard I. Feldman; Andrew D. Hamilton; Mark Polokoff; Santo V. Nicosia; Meenhard Herlyn; Said M. Sebti; Jin Q. Cheng

Accumulated studies have shown that activation of the Akt pathway plays a pivotal role in malignant transformation and chemoresistance by inducing cell survival, growth, migration, and angiogenesis. Therefore, Akt is believed to be a critical target for cancer intervention. Here, we report the discovery of a small molecule Akt pathway inhibitor, Akt/protein kinase B signaling inhibitor-2 (API-2), by screening the National Cancer Institute Diversity Set. API-2 suppressed the kinase activity and phosphorylation level of Akt. The inhibition of Akt kinase resulted in suppression of cell growth and induction of apoptosis in human cancer cells that harbor constitutively activated Akt due to overexpression of Akt or other genetic alterations such as PTEN mutation. API-2 is highly selective for Akt and does not inhibit the activation of phosphatidylinositol 3′-kinase, phosphoinositide-dependent kinase-1, protein kinase C, serum- and glucocorticoid-inducible kinase, protein kinase A, signal transducer and activators of transcription 3, extracellular signal-regulated kinase-1/2, or c-Jun NH2-terminal kinase. Furthermore, API-2 potently inhibited tumor growth in nude mice of human cancer cells in which Akt is aberrantly expressed/activated but not of those cancer cells in which it is not. These findings provide strong evidence for pharmacologically targeting Akt for anticancer drug discovery.


Oncogene | 2005

The Akt/PKB pathway: molecular target for cancer drug discovery

Jin Q. Cheng; Craig W Lindsley; George Z. Cheng; Hua Yang; Santo V. Nicosia

The serine/threonine kinase Akt/PKB pathway presents an exciting new target for molecular therapeutics, as it functions as a cardinal nodal point for transducing extracellular (growth factor and insulin) and intracellular (receptor tyrosine kinases, Ras and Src) oncogenic signals. In addition, alterations of the Akt pathway have been detected in a number of human malignancies. Ectopic expression of Akt, especially constitutively activated Akt, is sufficient to induce oncogenic transformation of cells and tumor formation in transgenic mice as well as chemoresistance. Akt has a wide range of downstream targets that regulate tumor-associated cell processes such as cell growth, cell cycle progression, survival, migration, epithelial–mesenchymal transition and angiogenesis. Blockage of Akt signaling results in apoptosis and growth inhibition of tumor cells with elevated Akt. The observed dependence of certain tumors on Akt signaling for survival and growth has wide implications for cancer therapy, offering the potential for preferential tumor cell killing. In the last several years, through combinatorial chemistry, high-throughput and virtual screening, and traditional medicinal chemistry, a number of inhibitors of the Akt pathway have been identified. This review focuses on ongoing translational efforts to therapeutically target the Akt pathway.


Journal of Biological Chemistry | 2004

Akt Phosphorylation and Stabilization of X-linked Inhibitor of Apoptosis Protein (XIAP)

Han C. Dan; Mei Sun; Satoshi Kaneko; Richard I. Feldman; Santo V. Nicosia; Hong-Gang Wang; Benjamin K. Tsang; Jin Q. Cheng

Akt negatively regulates apoptotic pathways at a premitochondrial level through phosphorylation and modulation of proteins such as Bad, Forkhead proteins, and GSK-3β. Akt has also been shown to protect cell death at a post-mitochondrial level, although its downstream targets have not been well documented. Here, we demonstrate that Akt, including AKT1 and AKT2, interacts with and phosphorylates X-linked inhibitor of apoptosis protein (XIAP) at residue serine-87 in vitro and in vivo. Phosphorylation of XIAP by Akt protects XIAP from ubiquitination and degradation in response to cisplatin. Moreover, autoubiquitination of XIAP is also inhibited by Akt. Consistent with this, an XIAP mutant introduced into cells which mimics the Akt-phosphorylated form (i.e. XIAP-S87D) displays reduced ubiquitination and degradation as compared with wild type XIAP. The greater stability of XIAP-S87D in cells translated to increased cell survival after cisplatin treatment. Conversely, a mutant that could not be phosphorylated by Akt (XIAP-S87A) was more rapidly degraded and showed increased cisplatin-induced apoptosis. Furthermore, suppression of XIAP by either siRNA or adenovirus of antisense of XIAP induced programmed cell death and inhibited Akt-stimulated cell survival in ovarian cancer cells. These data identify XIAP as a new downstream target of Akt and a potentially important mediator of the effect of Akt on cell survival.


Nature | 2011

Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL–RANK signalling

Wei Tan; Weizhou Zhang; Amy Strasner; Sergei I. Grivennikov; Jin Q. Cheng; Robert M. Hoffman; Michael Karin

Inflammatory mechanisms influence tumorigenesis and metastatic progression even in cancers whose aetiology does not involve pre-existing inflammation or infection, such as breast and prostate cancers. For instance, prostate cancer metastasis is associated with the infiltration of lymphocytes into advanced tumours and the upregulation of two tumour-necrosis-factor family members: receptor activator of nuclear factor-κB (RANK) ligand (RANKL) and lymphotoxin. But the source of RANKL and its role in metastasis have not been established. RANKL and its receptor RANK control the proliferation of mammary lobuloalveolar cells during pregnancy through inhibitor of nuclear factor-κB (IκB) kinase-α (IKK-α), a protein kinase that is needed for the self-renewal of mammary cancer progenitors and for prostate cancer metastasis. We therefore examined whether RANKL, RANK and IKK-α are also involved in mammary/breast cancer metastasis. Indeed, RANK signalling in mammary carcinoma cells that overexpress the proto-oncogene Erbb2 (also known as Neu), which is frequently amplified in metastatic human breast cancers, was important for pulmonary metastasis. Metastatic spread of Erbb2-transformed carcinoma cells also required CD4+CD25+ T cells, whose major pro-metastatic function was RANKL production. Most RANKL-producing T cells expressed forkhead box P3 (FOXP3), a transcription factor produced by regulatory T cells, and were located next to smooth muscle actin (SMA)+ stromal cells in mouse and human breast cancers. The dependence of pulmonary metastasis on T cells was replaceable by exogenous RANKL, which also stimulated pulmonary metastasis of RANK+ human breast cancer cells. These results are consistent with the adverse impact of tumour-infiltrating CD4+ or FOXP3+ T cells on human breast cancer prognosis and suggest that the targeting of RANKL–RANK can be used in conjunction with the therapeutic elimination of primary breast tumours to prevent recurrent metastatic disease.


Oncogene | 2000

Frequent activation of AKT2 and induction of apoptosis by inhibition of phosphoinositide-3-OH. kinase/Akt pathway in human ovarian cancer

Zeng Qiang Yuan; Mei Sun; Richard I. Feldman; Gen Wang; Xiao-ling Ma; Chen Jiang; Domenico Coppola; Santo V. Nicosia; Jin Q. Cheng

We previously demonstrated that AKT2, a member of protein kinase B family, is activated by a number of growth factors via Ras and PI 3-kinase signaling pathways. Here, we report the frequent activation of AKT2 in human primary ovarian cancer and induction of apoptosis by inhibition of phosphoinositide-3-OH kinase (PI 3-kinase)/Akt pathway. In vitro AKT2 kinase assay analyses in 91 ovarian cancer specimens revealed elevated levels of AKT2 activity (>3-fold) in 33 cases (36.3%). The majority of tumors displaying activated AKT2 were high grade and stages III and IV. Immunostaining and Western blot analyses using a phospho-ser-473 Akt antibody that detects the activated form of AKT2 (AKT2 phosphorylated at serine-474) confirmed the frequent activation of AKT2 in ovarian cancer specimens. Phosphorylated AKT2 in tumor specimens localized to the cell membrane and cytoplasm but not the nucleus. To address the mechanism of AKT2 activation, we measured in vitro PI 3-kinase activity in 43 ovarian cancer specimens, including the 33 cases displaying elevated AKT2 activation. High levels of PI 3-kinase activity were observed in 20 cases, 15 of which also exhibited AKT2 activation. The remaining five cases displayed elevated AKT1 activation. Among the cases with elevated AKT2, but not PI 3-kinase activity (18 cases), three showed down-regulation of PTEN protein expression. Inhibition of PI 3-kinase/AKT2 by wortmannin or LY294002 induces apoptosis in ovarian cancer cells exhibiting activation of the PI 3-kinase/AKT2 pathway. These findings demonstrate for the first time that activation of AKT2 is a common occurrence in human ovarian cancer and that PI 3-kinase/Akt pathway may be an important target for ovarian cancer intervention.


Journal of Biological Chemistry | 2002

Phosphatidylinositol 3-kinase/Akt pathway regulates tuberous sclerosis tumor suppressor complex by phosphorylation of tuberin.

Han C. Dan; Mei Sun; Lin Yang; Richard I. Feldman; Xue Mei Sui; Chien Chen Ou; Mark Nellist; Raymond S. Yeung; Dicky Halley; Santo V. Nicosia; Warren J. Pledger; Jin Q. Cheng

Normal cellular functions of hamartin and tuberin, encoded by the TSC1 and TSC2tumor suppressor genes, are closely related to their direct interactions. However, the regulation of the hamartin-tuberin complex in the context of the physiologic role as tumor suppressor genes has not been documented. Here we show that insulin or insulin growth factor (IGF) 1 stimulates phosphorylation of tuberin, which is inhibited by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 but not by the mitogen-activated protein kinase inhibitor PD98059. Expression of constitutively active PI3K or active Akt, including Akt1 and Akt2, induces tuberin phosphorylation. We further demonstrate that Akt/PKB associates with hamartin-tuberin complexes, promoting phosphorylation of tuberin and increased degradation of hamartin-tuberin complexes. The ability to form complexes, however, is not blocked. Akt also inhibits tuberin-mediated degradation of p27kip1, thereby promoting CDK2 activity and cellular proliferation. Our results indicate that tuberin is a direct physiological substrate of Akt and that phosphorylation of tuberin by PI3K/Akt is a major mechanism controlling hamartin-tuberin function.


Cancer Research | 2005

Action of the Src Family Kinase Inhibitor, Dasatinib (BMS-354825), on Human Prostate Cancer Cells

Sangkil Nam; Donghwa Kim; Jin Q. Cheng; Shumin M. Zhang; Ji-Hyun Lee; Ralf Buettner; Janni Mirosevich; Francis Y. Lee; Richard Jove

Src family kinases (SFK) are currently being investigated as targets for treatment strategies in various cancers. The novel SFK/Abl inhibitor, dasatinib (BMS-354825), is a promising therapeutic agent with oral bioavailability. Dasatinib has been shown to inhibit growth of Bcr-Abl-dependent chronic myeloid leukemia xenografts in nude mice. Dasatinib also has been shown to have activity against cultured human prostate and breast cancer cells. However, the molecular mechanism by which dasatinib acts on epithelial tumor cells remains unknown. In this study, we show that dasatinib blocks the kinase activities of the SFKs, Lyn, and Src, in human prostate cancer cells at low nanomolar concentrations. Moreover, focal adhesion kinase and Crk-associated substrate (p130(CAS)) signaling downstream of SFKs are also inhibited at similar concentrations of dasatinib. Consistent with inhibition of these signaling pathways, dasatinib suppresses cell adhesion, migration, and invasion of prostate cancer cells at low nanomolar concentrations. Therefore, dasatinib has potential as a therapeutic agent for metastatic prostate cancers harboring activated SFK and focal adhesion kinase signaling.

Collaboration


Dive into the Jin Q. Cheng's collaboration.

Top Co-Authors

Avatar

Domenico Coppola

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Santo V. Nicosia

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Said M. Sebti

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Donghwa Kim

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

William Kong

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Hua Yang

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Mei Sun

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Lili He

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Jianping Guo

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Patricia A. Kruk

University of South Florida

View shared research outputs
Researchain Logo
Decentralizing Knowledge