Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jin Ung Bae is active.

Publication


Featured researches published by Jin Ung Bae.


Hypertension Research | 2012

Antihypertensive effect of gomisin A from Schisandra chinensis on angiotensin II-induced hypertension via preservation of nitric oxide bioavailability

Ji Young Park; Jung Wook Yun; Young Whan Choi; Jin Ung Bae; Kyo Won Seo; Seung Jin Lee; So Youn Park; Ki Whan Hong; Chi Dae Kim

Gomisin A (GA) is a small molecular weight lignan present in Schisandra chinensis, and has been demonstrated to have vasodilatory activity. In the present study, we investigated the effect of GA on blood pressure (BP) in angiotensin II (Ang II)-induced hypertensive mice. C57/BL6 mice infused subcutaneously with Ang II (1 and 2 μg kg−1 per min for 2 weeks) showed an increase in BP with a decrease in nitric oxide (NO) metabolites in plasma, and a negative correlation between these two parameters was demonstrated. In the thoracic aorta from Ang II-induced hypertensive mice, a decrease in vascular NO that was accompanied by a diminution of phosphorylated endothelial nitric oxide synthase (eNOS), as well as by increased reactive oxygen species (ROS) production, was demonstrated. These alterations in BP, eNOS phosphorylation and ROS production in the vasculature of Ang II-treated mice were markedly and dose-dependently reversed by simultaneous administration of GA (2 and 10 μg kg−1 per min). In addition, Ang II-induced ROS production in cultured vascular cells such as endothelial cells and vascular smooth muscle cells was markedly attenuated by GA. These results suggested that GA attenuated the increase in BP via preservation of vascular NO bioavailability not only by inhibiting ROS production but also by preventing the impairment of eNOS function in the vasculature of Ang II-induced hypertensive mice.


PLOS ONE | 2013

Mechanical stretch increases MMP-2 production in vascular smooth muscle cells via activation of PDGFR-β/Akt signaling pathway.

Kyo Won Seo; Seung Jin Lee; Yun Hak Kim; Jin Ung Bae; So Youn Park; Sun Sik Bae; Chi Dae Kim

Increased blood pressure, leading to mechanical stress on vascular smooth muscle cells (VSMC), is a known risk factor for vascular remodeling via increased activity of matrix metalloproteinase (MMP) within the vascular wall. This study aimed to identify cell surface mechanoreceptors and intracellular signaling pathways that influence VSMC to produce MMP in response to mechanical stretch (MS). When VSMC was stimulated with MS (0–10% strain, 60 cycles/min), both production and gelatinolytic activity of MMP-2, but not MMP-9, were increased in a force-dependent manner. MS-enhanced MMP-2 expression and activity were inhibited by molecular inhibition of Akt using Akt siRNA as well as by PI3K/Akt inhibitors, LY293002 and AI, but not by MAPK inhibitors such as PD98059, SP600125 and SB203580. MS also increased Akt phosphorylation in VSMC, which was attenuated by AG1295, a PDGF receptor (PDGFR) inhibitor, but not by inhibitors for other receptor tyrosine kinase including EGF, IGF, and FGF receptors. Although MS activated PDGFR-α as well as PDGFR-β in VSMC, MS-induced Akt phosphorylation was inhibited by molecular deletion of PDGFR-β using siRNA, but not by inhibition of PDGFR-α. Collectively, our data indicate that MS induces MMP-2 production in VSMC via activation of Akt pathway, that is mediated by activation of PDGFR-β signaling pathways.


Toxicology and Applied Pharmacology | 2012

Homocysteine enhances MMP-9 production in murine macrophages via ERK and Akt signaling pathways.

Seung Jin Lee; Yi Sle Lee; Kyo Won Seo; Jin Ung Bae; Gyu Hee Kim; So Youn Park; Chi Dae Kim

Homocysteine (Hcy) at elevated levels is an independent risk factor of cardiovascular diseases, including atherosclerosis. In the present study, we investigated the effect of Hcy on the production of matrix metalloproteinases (MMP) in murine macrophages. Among the MMP known to regulate the activities of collagenase and gelatinase, Hcy exclusively increased the gelatinolytic activity of MMP-9 in J774A.1 cells as well as in mouse peritoneal macrophages. Furthermore, this activity was found to be correlated with Western blot findings in J774A.1 cells, which showed that MMP-9 expression was concentration- and time-dependently increased by Hcy. Inhibition of the ERK and Akt pathways led to a significant decrease in Hcy-induced MMP-9 expression, and combined treatment with inhibitors of the ERK and Akt pathways showed an additive effects. Activity assays for ERK and Akt showed that Hcy increased the phosphorylation of both, but these phosphorylation were not affected by inhibitors of the Akt and ERK pathways. In line with these findings, the molecular inhibition of ERK and Akt using siRNA did not affect the Hcy-induced phosphorylation of Akt and ERK, respectively. Taken together, these findings suggest that Hcy enhances MMP-9 production in murine macrophages by separately activating the ERK and Akt signaling pathways.


Vascular Pharmacology | 2012

Gomisin J from Schisandra chinensis induces vascular relaxation via activation of endothelial nitric oxide synthase.

Ji Young Park; Young Whan Choi; Jung Wook Yun; Jin Ung Bae; Kyo Won Seo; Seung Jin Lee; So Youn Park; Chi Dae Kim

Gomisin J (GJ) is a lignan contained in Schisandra chinensis (SC) which is a well-known medicinal herb for improvement of cardiovascular symptoms in Korean. Thus, the present study examined the vascular effects of GJ, and also determined the mechanisms involved. Exposure of rat thoracic aorta to GJ (1-30μg/ml) resulted in a concentration-dependent vasorelaxation, which was more prominent in the endothelium (ED)-intact aorta. ED-dependent relaxation induced by GJ was markedly attenuated by pretreatment with L-NAME, a nitric oxide synthase (NOS) inhibitor. In the intact endothelial cells of rat thoracic aorta, GJ also enhanced nitric oxide (NO) production. In studies using human coronary artery endothelial cells, GJ enhanced phosphorylation of endothelial NOS (eNOS) at Ser(1177) with increased cytosolic translocation of eNOS, and subsequently increased NO production. These effects of GJ were attenuated not only by calcium chelators including EGTA and BAPTA-AM, but also by LY294002, a PI3K/Akt inhibitor, indicating calcium- and PI3K/Akt-dependent activation of eNOS by GJ. Moreover, the levels of intracellular calcium were increased immediately after GJ administration, but Akt phosphorylation was started to increase at 20min of GJ treatment. Based on these results with the facts that ED-dependent relaxation occurred rapidly after GJ treatment, it was suggested that the ED-dependent vasorelaxant effects of GJ were mediated mainly by calcium-dependent activation of eNOS with subsequent production of endothelial NO.


The Korean Journal of Physiology and Pharmacology | 2011

HO-1 Induced by Cilostazol Protects Against TNF-α-associated Cytotoxicity via a PPAR-γ-dependent Pathway in Human Endothelial Cells.

So Youn Park; Jin Ung Bae; Ki Whan Hong; Chi Dae Kim

A large body of evidence has indicated that induction of endogenous antioxidative proteins seems to be a reasonable strategy for delaying the progression of cell injury. In our previous study, cilostazol was found to increase the expression of the antioxidant enzyme heme oxygenase-1 (HO-1) in synovial cells. Thus, the present study was undertaken to examine whether cilostazol is able to counteract tumor necrosis factor-α (TNF-α)-induced cell death in endothelial cells via the induction of HO-1 expression. We exposed human umbilical vein endothelial cells (HUVECs) to TNF-α (50 ng/ml), with or without cilostazol (10 µM). Pretreatment with cilostazol markedly reduced TNF-α-induced viability loss in the HUVECs, which was reversed by zinc protoporphyrine IX (ZnPP), an inhibitor of HO-1. Moreover, cilostazol increased HO-1 protein and mRNA expression. Cilostazol-induced HO-1 induction was markedly attenuated not only by ZnPP but also by copper-protoporphyrin IX (CuPP). In an assay measuring peroxisome proliferator-activated receptor-γ (PPAR-γ) transcription activity, cilostazol directly increased PPAR-γ transcriptional activity which was completely abolished by HO-1 inhibitor. Furthermore, increased PPAR-γ activity by cilostazol and rosiglitazone was completely abolished in cells transfected with HO-1 siRNA. Taken together, these results indicate that cilostazol up-regulates HO-1 and protects cells against TNF-α-induced endothelial cytotoxicity via a PPAR-γ-dependent pathway.


The Journal of Pathology | 2014

Resistin derived from diabetic perivascular adipose tissue up‐regulates vascular expression of osteopontin via the AP‐1 signalling pathway

So Youn Park; Kyu Hee Kim; Kyo Won Seo; Jin Ung Bae; Yun Hak Kim; Seung Jin Lee; Won Suk Lee; Chi Dae Kim

Perivascular adipose tissue (PVAT) is implicated in the development of vascular diseases; however, the roles of PVAT on OPN expression in diabetic vasculature remain to be determined. This study investigated the role of adipokines derived from diabetic PVAT in regulating the vascular expression of OPN and explored the mechanisms involved. Aortic sections of ob/ob and high‐fat diet (HFD)‐induced obese (DIO) mice showed an increased expression of OPN, which was paralleled by increased amounts of PVAT characterized by enlargement of adipocytes. In the earlier phase of HFD feeding, macrophage infiltration was mainly localized to the area of PVAT at which adipocytes were enlarged, suggesting a potential link of activated adipocytes to macrophage infiltration. PVAT sections of ob/ob and DIO mice revealed a significantly greater number of macrophages with increased expression of adipokines, including resistin and visfatin. The distribution of resistin in PVAT mostly co‐localized with macrophages, while visfatin was expressed in macrophages and other cells. In in vitro studies, OPN expression in vascular smooth muscle cells (VSMCs) co‐cultured with PVAT of DIO mice was significantly increased, which was attenuated by a resistin‐neutralizing antibody. Likewise, resistin up‐regulated expression of OPN mRNA and protein in cultured VSMCs and the pivotal role of AP‐1 in resistin‐induced OPN transcription was demonstrated. Resistin produced by PVAT plays a pivotal role in the up‐regulated expression of OPN in the diabetic vasculature via a signalling pathway that involves activation of AP‐1.


Journal of Lipid Research | 2013

PAF enhances MMP-2 production in rat aortic VSMCs via a β-arrestin2-dependent ERK signaling pathway

Yun Hak Kim; Seung Jin Lee; Kyo Won Seo; Jin Ung Bae; So Youn Park; Eun Kyoung Kim; Sun Sik Bae; Jae Ho Kim; Chi Dae Kim

Platelet-activating factor (PAF), 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine, is a potent phospholipid mediator and has been reported to be localized in atherosclerotic plaque. However, its role in the progression of atherosclerosis remains unclear. In the present study, we investigated the role of PAF in the production of matrix metalloproteinase (MMP) in primary vascular smooth muscle cells (VSMCs). When rat aortic primary VSMCs were stimulated with PAF (1 nmol/l), the expressions of MMP-2 mRNA and protein, but not of MMP-9, were significantly increased, and these upregulations were markedly attenuated by inhibiting extracellular signal-regulated kinases (ERKs) using molecular and pharmacological inhibitors, but not by using inhibitors of p38 mitogen-activated protein kinase or c-Jun N-terminal kinase. Likewise, ERK phosphorylation was markedly enhanced in PAF-stimulated VSMCs, and this was attenuated by WEB2086, but not by EGF receptor inhibitor, demonstrating the specificity of PAF receptor (PAFR) in PAF-induced ERK phosphorylation. In immunofluorescence studies, β-arrestin2 in PAF-stimulated VSMCs colocalized with PAFR and phosphorylated ERK (P-ERK). Coimmunoprecipitation results suggest that β-arrestin2-bound PAFRs existed as a complex with P-ERK. In addition, PAF-induced ERK phosphorylation and MMP-2 production were significantly attenuated by β-arrestin2 depletion. Taken together, the study shows that PAF enhances MMP-2 production in VSMCs via a β-arrestin2-dependent ERK signaling pathway.


Cardiovascular Research | 2013

5-Lipoxygenase plays a pivotal role in endothelial adhesion of monocytes via an increased expression of Mac-1

Seung Jin Lee; Eun Kyoung Choi; Kyo Won Seo; Jin Ung Bae; Yun Hak Kim; So Youn Park; Sae Ock Oh; Chi Dae Kim

AIMS 5-Lipoxygenase (5-LO) is known to participate in the pathogenesis of atherosclerosis; however, the underlying mechanisms are unclear. Thus, this study investigated the molecular mechanisms responsible for 5-LO expression in monocytes as well as the role of 5-LO in monocyte adhesion to the vascular endothelium, which is a key early event in macrophage foam cell formation. METHODS AND RESULTS An en face immunohistochemistry of endothelial surfaces revealed a marked increase in monocyte adhesion to the aortic endothelium in wild-type (WT) mice treated with lipopolysaccharide (LPS), which was significantly attenuated in 5-LO((-/-)) mice. Likewise, the adhesion capacity of primary monocytes isolated from LPS-treated WT mice was higher than those of monocytes from 5-LO((-/-)) mice. In in vitro study, LPS increased monocyte adhesion to endothelial cells with an enhanced Mac-1 expression. These were attenuated by a 5-LO inhibitor, MK886, as well as by molecular depletion of 5-LO in monocytes. Furthermore, LPS-induced Mac-1 expression on monocytes was significantly inhibited by pre-treatment with U-75302, a BLT1-receptor antagonist, suggesting a pivotal role of 5-LO-derived leukotrienes. In promoter activity analysis and chromatin immunoprecipitation assays to identify transcription factors involved in 5-LO expression, both NF-κB and Sp1 played central roles to increase 5-LO expression in LPS-treated monocytes. CONCLUSION 5-LO expression in monocytes is modulated via NF-κB and Sp1 signalling pathways, and 5-LO plays a pivotal role in LPS-mediated monocyte adhesion to the vascular endothelium through an increased expression of Mac-1 on monocytes.


PLOS ONE | 2014

TLR4-Mediated Expression of Mac-1 in Monocytes Plays a Pivotal Role in Monocyte Adhesion to Vascular Endothelium

Seung Jin Lee; Eun Kyoung Choi; Kyo Won Seo; Jin Ung Bae; So Youn Park; Chi Dae Kim

Toll-like receptor 4 (TLR4) is known to mediate monocyte adhesion to endothelial cells, however, its role on the expression of monocyte adhesion molecules is unclear. In the present study, we investigated the role of TLR4 on the expression of monocyte adhesion molecules, and determined the functional role of TLR4-induced adhesion molecules on monocyte adhesion to endothelial cells. When THP-1 monocytes were stimulated with Kdo2-Lipid A (KLA), a specific TLR4 agonist, Mac-1 expression was markedly increased in association with an increased adhesion of monocytes to endothelial cells. These were attenuated by anti-Mac-1 antibody, suggesting a functional role of TLR4-induced Mac-1 on monocyte adhesion to endothelial cells. In monocytes treated with MK886, a 5-lipoxygenase (LO) inhibitor, both Mac-1 expression and monocyte adhesion to endothelial cells induced by KLA were markedly attenuated. Moreover, KLA increased the expression of mRNA and protein of 5-LO, suggesting a pivotal role of 5-LO on these processes. In in vivo studies, KLA increased monocyte adhesion to aortic endothelium of wild-type (WT) mice, which was attenuated in WT mice treated with anti-Mac-1 antibody as well as in TLR4-deficient mice. Taken together, TLR4-mediated expression of Mac-1 in monocytes plays a pivotal role on monocyte adhesion to vascular endothelium, leading to increased foam cell formation in the development of atherosclerosis.


Platelets | 2016

SIRT1 prevents pulmonary thrombus formation induced by arachidonic acid via downregulation of PAF receptor expression in platelets.

Yun Hak Kim; Jin Ung Bae; In Suk Kim; Chulhun L. Chang; Sae Ock Oh; Chi Dae Kim

Abstract SIRT1, a class III histone deacetylase, is critically involved in cellular response to stress and modulates cardiovascular risk factors. However, its role in thrombus formation is largely unknown. Thus, this study investigated the effect of SIRT1 on pulmonary thrombus formation, and then identified its role in the modulation of platelet aggregation. In isolated human platelets, cell aggregation was increased by various platelet activators, such as platelet activating factor (PAF), arachidonic acid (AA), ADP, and thrombin. AA- and PAF-mediated platelet aggregations were suppressed by WEB2086, a PAF receptor (PAFR) antagonist. Pulmonary thrombus formation induced by PAF or AA was also attenuated by WEB2086, suggesting that PAFR plays a key role in AA-induced platelet aggregation. In platelets isolated from SIRT1-TG mice as well as in platelets treated with resveratrol or reSIRT1, PAFR expression was decreased, whereas this expressional downregulation by SIRT1 activators was inhibited in platelets treated with MG132 (a proteasome inhibitor) or NH4Cl (a lysosome inhibitor). Furthermore, platelet aggregation induced by AA was markedly attenuated by resveratrol and reSIRT1. Likewise, the increased pulmonary thrombus formation in mice treated with AA was also attenuated by SIRT1 activators. In line with these results, pulmonary thrombus formation was markedly attenuated in SIRT1-TG mice. Taken together, this study showed that SIRT1 downregulates PAFR expression on platelets via proteasomal and lysosomal pathways, and that this downregulation inhibits platelet aggregation in vitro and pulmonary thrombus formation in vivo.

Collaboration


Dive into the Jin Ung Bae's collaboration.

Top Co-Authors

Avatar

Chi Dae Kim

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Kyo Won Seo

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Seung Jin Lee

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

So Youn Park

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Yun Hak Kim

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Jung Wook Yun

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Eun Kyoung Choi

Pusan National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ki Whan Hong

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Sae Ock Oh

Pusan National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge