Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jin-Yuan Shih is active.

Publication


Featured researches published by Jin-Yuan Shih.


Proceedings of the National Academy of Sciences of the United States of America | 2007

MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib

James Bean; Cameron Brennan; Jin-Yuan Shih; Gregory J. Riely; Agnes Viale; Lu Wang; Dhananjay Chitale; Noriko Motoi; Janos Szoke; Stephen Broderick; Marissa Balak; Wen Cheng Chang; Chong-Jen Yu; Adi F. Gazdar; Harvey I. Pass; Valerie W. Rusch; William L. Gerald; Shiu Feng Huang; Pan-Chyr Yang; Vincent A. Miller; Marc Ladanyi; Chih-Hsin Yang; William Pao

In human lung adenocarcinomas harboring EGFR mutations, a second-site point mutation that substitutes methionine for threonine at position 790 (T790M) is associated with approximately half of cases of acquired resistance to the EGFR kinase inhibitors, gefitinib and erlotinib. To identify other potential mechanisms that contribute to disease progression, we used array-based comparative genomic hybridization (aCGH) to compare genomic profiles of EGFR mutant tumors from untreated patients with those from patients with acquired resistance. Among three loci demonstrating recurrent copy number alterations (CNAs) specific to the acquired resistance set, one contained the MET proto-oncogene. Collectively, analysis of tumor samples from multiple independent patient cohorts revealed that MET was amplified in tumors from 9 of 43 (21%) patients with acquired resistance but in only two tumors from 62 untreated patients (3%) (P = 0.007, Fishers Exact test). Among 10 resistant tumors from the nine patients with MET amplification, 4 also harbored the EGFRT790M mutation. We also found that an existing EGFR mutant lung adenocarcinoma cell line, NCI-H820, harbors MET amplification in addition to a drug-sensitive EGFR mutation and the T790M change. Growth inhibition studies demonstrate that these cells are resistant to both erlotinib and an irreversible EGFR inhibitor (CL-387,785) but sensitive to a multikinase inhibitor (XL880) with potent activity against MET. Taken together, these data suggest that MET amplification occurs independently of EGFRT790M mutations and that MET may be a clinically relevant therapeutic target for some patients with acquired resistance to gefitinib or erlotinib.


Cancer Research | 2007

Epidermal Growth Factor Receptor Cooperates with Signal Transducer and Activator of Transcription 3 to Induce Epithelial-Mesenchymal Transition in Cancer Cells via Up-regulation of TWIST Gene Expression

Hui-Wen Lo; Sheng-Chieh Hsu; Weiya Xia; Xinyu Cao; Jin-Yuan Shih; Yongkun Wei; James L. Abbruzzese; Gabriel N. Hortobagyi; Mien Chie Hung

Aberrant epidermal growth factor receptor (EGFR) signaling is a major cause of tumor progression and metastasis; the underlying mechanisms, however, are not well understood. In particular, it remains elusive whether deregulated EGFR pathway is involved in epithelial-mesenchymal transition (EMT), an early event that occurs during metastasis of cancers of an epithelial origin. Here, we show that EGF induces EGFR-expressing cancer cells to undergo a transition from the epithelial to the spindle-like mesenchymal morphology. EGF reduced E-cadherin expression and increased that of mesenchymal proteins. In search of a downstream mediator that may account for EGF-induced EMT, we focused on transcription repressors of E-cadherin, TWIST, SLUG, and Snail and found that cancer cells express high levels of TWIST and that EGF enhances its expression. EGF significantly increases TWIST transcripts and protein in EGFR-expressing lines. Forced expression of EGFR reactivates TWIST expression in EGFR-null cells. TWIST expression is suppressed by EGFR and Janus-activated kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) inhibitors, but not significantly by those targeting phosphoinositide-3 kinase and MEK/ERK. Furthermore, constitutively active STAT3 significantly activates the TWIST promoter, whereas the JAK/STAT3 inhibitor and dominant-negative STAT3 suppressed TWIST promoter. Deletion/mutation studies further show that a 26-bp promoter region contains putative STAT3 elements required for the EGF-responsiveness of the TWIST promoter. Chromatin immunoprecipitation assays further show that EGF induces binding of nuclear STAT3 to the TWIST promoter. Immunohistochemical analysis of 130 primary breast carcinomas indicates positive correlations between non-nuclear EGFR and TWIST and between phosphorylated STAT3 and TWIST. Together, we report here that EGF/EGFR signaling pathways induce cancer cell EMT via STAT3-mediated TWIST gene expression.


Journal of Clinical Oncology | 2012

Pretreatment Epidermal Growth Factor Receptor (EGFR) T790M Mutation Predicts Shorter EGFR Tyrosine Kinase Inhibitor Response Duration in Patients With Non–Small-Cell Lung Cancer

Kang-Yi Su; Hsuan-Yu Chen; Ker-Chau Li; Min-Liang Kuo; James Chih-Hsin Yang; Wing-Kai Chan; Bing-Ching Ho; Gee-Chen Chang; Jin-Yuan Shih; Sung-Liang Yu; Pan-Chyr Yang

PURPOSE Patients with non-small-cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR)-activating mutations have excellent response to EGFR tyrosine kinase inhibitors (TKIs), but T790M mutation accounts for most TKI drug resistance. This study used highly sensitive methods to detect T790M before and after TKI therapy and investigated the association of T790M and its mutation frequencies with clinical outcome. PATIENTS AND METHODS Direct sequencing, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and next-generation sequencing (NGS) were used to assess T790M in the following two cohorts of patients with NSCLC: TKI-naive patients (n = 107) and TKI-treated patients (n = 85). Results were correlated with TKI treatment response and survival. RESULTS MALDI-TOF MS was highly sensitive in detecting and quantifying the frequency of EGFR-activating mutations and T790M (detection limits, 0.4% to 2.2%). MALDI-TOF MS identified more T790M than direct sequencing in TKI-naive patients with NSCLC (27 of 107 patients, 25.2% v three of 107 patients, 2.8%, respectively; P < .001) and in TKI-treated patients (before TKI: 23 of 73 patients, 31.5% v two of 73 patients, 2.7%, respectively; P < .001; and after TKI: 10 of 12 patients, 83.3% v four of 12 patients, 33.3%, respectively; P = .0143). The EGFR mutations and their frequencies were confirmed by NGS. T790M was an independent predictor of decreased progression-free survival (PFS) in patients with NSCLC who received TKI treatment (P < .05, multivariate Cox regression). CONCLUSION T790M may not be a rare event before or after TKI therapy in patients with NSCLC with EGFR-activating mutations. The pretreatment T790M mutation was associated with shorter PFS with EGFR TKI therapy in patients with NSCLC.


Lancet Oncology | 2012

Afatinib for patients with lung adenocarcinoma and epidermal growth factor receptor mutations (LUX-Lung 2): a phase 2 trial

James Chih-Hsin Yang; Jin-Yuan Shih; Wu-Chou Su; Te Chun Hsia; Chun-Ming Tsai; Sai-Hong Ignatius Ou; Chung Jen Yu; Gee Chen Chang; Ching Liang Ho; Lecia V. Sequist; Arkadiusz Z. Dudek; Mehdi Shahidi; Xiuyu Julie Cong; Robert M. Lorence; Pan-Chyr Yang; Vincent A. Miller

BACKGROUND Afatinib is an irreversible ErbB-family blocker with preclinical activity in non-small-cell lung cancer (NSCLC) with EGFR mutations. We aimed to assess the efficacy of afatinib in patients with lung adenocarcinoma and EGFR mutations. METHODS In this phase 2 study, we enrolled patients from 30 centres in Taiwan and the USA with lung adenocarcinoma (stage IIIb with pleural effusion or stage IV) with EGFR mutations, who had no more than one previous chemotherapy regimen for advanced disease, an Eastern Cooperative Oncology Group performance status of 0-2, and no previous treatment with EGFR tyrosine-kinase inhibitors. We tested two afatinib starting doses: 50 mg daily and subsequently 40 mg daily, introduced to establish whether tolerability could be improved with retention of anti-tumour activity. The primary endpoint was the proportion of patients with a confirmed objective response (complete response or partial response), on the basis of Response Evaluation Criteria in Solid Tumors 1.0 (independent review). This study is registered with ClinicalTrials.gov, number NCT00525148. FINDINGS 129 patients were treated with afatinib, 99 with a starting dose of 50 mg and 30 with a starting dose of 40 mg. 79 (61%) of 129 patients had an objective response (two complete responses, 77 partial responses). 70 (66%) of the 106 patients with the two common activating EGFR mutations (deletion 19 or L858R) had an objective response, as did nine (39%) of 23 patients with less common mutations. Similar proportions of patients had an objective response when analysed by starting dose (18 [60%] of 30 patients at 40 mg vs 61 [62%] of 99 patients at 50 mg). Of the two most common adverse events (diarrhoea and rash or acne), grade 3 events were more common in patients receiving a 50 mg starting dose (22 [22%] of 99 patients for diarrhoea and 28 [28%] of 99 patients for rash or acne) than they were in those receiving a 40 mg starting dose (two [7%] of 30 patients for both diarrhoea and rash or acne); possibly treatment-related serious adverse events were also less common in patients receiving a 40 mg starting dose (two of 30 patients vs 14 of 99 patients). We recorded one possibly drug-related death (interstitial lung disease). INTERPRETATION Afatinib shows activity in the treatment of patients with advanced lung adenocarcinoma with EGFR mutations, especially in patients with deletion 19 or L858R mutations. The efficacy of afatinib 40 mg should be compared with chemotherapy or other EGFR tyrosine-kinase inhibitors in EGFR-mutation-positive NSCLC. FUNDING Boehringer Ingelheim Inc.


Journal of Clinical Oncology | 2008

Specific EGFR Mutations Predict Treatment Outcome of Stage IIIB/IV Patients With Chemotherapy-Naive Non–Small-Cell Lung Cancer Receiving First-Line Gefitinib Monotherapy

Chih-Hsin Yang; Chong-Jen Yu; Jin-Yuan Shih; Yeun-Chung Chang; Fu-Chang Hu; Meng-Chin Tsai; Kuan-Yu Chen; Zhong-Zhe Lin; Ching-Ju Huang; Chia-Tung Shun; C. Huang; James Bean; Ann-Lii Cheng; William Pao; Pan-Chyr Yang

PURPOSE To explore predictive factors for time to treatment failure (TTF) in chemotherapy-naive non-small-cell lung cancer (NSCLC) patients receiving gefitinib treatment. PATIENTS AND METHODS We designed a phase II study to test gefitinib antitumor efficacy in advanced-stage, chemotherapy-naive NSCLC patients. Patients were treated with gefitinib 250 mg/d. Tumor assessments were performed every 2 months. Responding or stable patients were treated until progression or unacceptable toxicity. All scans were reviewed independently. EGFR exons 18-21 sequence, K-ras exon 2 sequence, and MET gene copy numbers were examined in available samples. Clinical or molecular predictors of TTF were examined by multivariate analysis. RESULTS One hundred six patients were enrolled. Ninety patients had tumor samples for biomarker tests. Overall response rate was 50.9% (95% CI, 41.4% to 60.4%). Median TTF was 5.5 months, and median overall survival (OS) was 22.4 months. The response rate and median TTF of the patients with exon 19 deletion (n = 20) were 95.0% and 8.9 months, for exon 21 L858R mutation (n = 23) were 73.9% and 9.1 month, and for other types of EGFR mutations (N = 12) were 16.7% and 2.3 months, respectively. In multivariate analysis, the presence of EGFR deletion exon 19 or L858R EGFR mutations in adenocarcinoma patients predicted longer TTF. High copy number of MET seemed to correlate with shorter TTF in patients with gefitinib-sensitive activating EGFR mutations. CONCLUSION In this prospective study, EGFR exon 19 deletion or L858R mutations in adenocarcinoma were the best predictors for longer TTF in stage IIIB/IV chemotherapy-naive NSCLC patients receiving first-line gefitinib monotherapy.


Clinical Cancer Research | 2008

Lung Cancer with Epidermal Growth Factor Receptor Exon 20 Mutations Is Associated with Poor Gefitinib Treatment Response

Jenn-Yu Wu; Shang-Gin Wu; Chih-Hsin Yang; Chien-Hung Gow; Yih-Leong Chang; Chong-Jen Yu; Jin-Yuan Shih; Pan-Chyr Yang

Purpose: Clinical reports about responsiveness to gefitinib treatment in patients of non-small cell lung cancer (NSCLC) with mutations in exon 20 of epidermal growth factor receptor (EGFR) are limited. To increase understanding of the influence of exon 20 mutations on NSCLC treatment with gefitinib, we investigated the clinical features of lung cancer in patients with exon 20 mutations and analyzed the gefitinib treatment response. Experimental Design: We surveyed the clinical data and mutational studies of NSCLC patients with EGFR exon 20 mutations in the National Taiwan University Hospital and reviewed the literature reports about EGFR exon 20 mutations and the gefitinib treatment response. Results: Twenty-three patients with mutations in exon 20 were identified. Nine (39%) had coexisting mutations in EGFR exons other than exon 20. Sixteen patients received gefitinib treatment, and a response was noted in 4 patients. The gefitinib response rate of NSCLC with exon 20 mutations was 25%, far lower than those with deletions in exon 19 and L858R mutations. Interestingly, different exon 20 mutations and coexisting mutations seemed to have a different influence on gefitinib response. Conclusions: EGFR exon 20 mutations of NSCLC patients result in poorer responsiveness to gefitinib treatment, but variability exists between different individuals.


Clinical Cancer Research | 2011

Effectiveness of Tyrosine Kinase Inhibitors on “Uncommon” Epidermal Growth Factor Receptor Mutations of Unknown Clinical Significance in Non–Small Cell Lung Cancer

Jenn-Yu Wu; Chong-Jen Yu; Yeun-Chung Chang; Chih-Hsin Yang; Jin-Yuan Shih; Pan-Chyr Yang

Purpose: Clinical features of epidermal growth factor receptor (EGFR) mutations, L858R, deletions in exon 19, T790M, and insertions in exon 20, in non–small cell lung cancer (NSCLC) are well known. The clinical significance of other uncommon EGFR mutations, such as their association with the effectiveness of EGFR tyrosine kinase inhibitors (TKI), is not well understood. This study aimed to improve the understanding of these uncommon EGFR mutations of unknown clinical significance. Patients and Methods: Specimens from 1,261 patients were tested for EGFR mutations. We surveyed the clinical data and the effectiveness of gefitinib and erlotinib in NSCLC patients with uncommon EGFR mutations. Results: Of the 1,261 patients, 627 (49.8%) had EGFR mutations. This included 258 patients with deletions in exon 19, 260 patients with L858R, 25 patients with insertions or duplications in exon 20, 6 patients with de novo T790M, and 78 (12.4%) patients with uncommon mutations. Of the 78 patients, 62 received either gefitinib or erlotinib treatment. The response rate of TKIs treatment was 48.4%, and the median progression-free survival (PFS) was 5.0 months. Mutations on G719 and L861 composed a major part (28 of 62) of uncommon mutations, and were associated with a favorable effectiveness of EGFR TKIs (response rate, 57.1%; median PFS, 6.0 months). Mutations other than G719 and L861 led to a worse response to EGFR TKIs (response rate, 20.0%; median PFS, 1.6 months). Conclusions: Uncommon EGFR mutations constituted a distinct part of the whole group of EGFR mutations. Their composition was heterogeneous, and their associations with EGFR TKIs differed. Clin Cancer Res; 17(11); 3812–21. ©2011 AACR.


Cancer Research | 2004

Cyclooxygenase-2 induces EP1- and HER-2/Neu-dependent vascular endothelial growth factor-C up-regulation: a novel mechanism of lymphangiogenesis in lung adenocarcinoma.

Jen Liang Su; Jin-Yuan Shih; Men Luh Yen; Yung-Ming Jeng; Cheng-Chi Chang; Chang Yao Hsieh; Lin Hung Wei; Pan-Chyr Yang; Min-Liang Kuo

Cyclooxygenase (COX)-2, the inducible isoform of prostaglandin H synthase, has been implicated in the progression of human lung adenocarcinoma. However, the mechanism underlying COX-2’s effect on tumor progression remains largely unknown. Lymphangiogenesis, the formation of new lymphatic vessels, has recently received considerable attention and become a new frontier of tumor metastasis research. Here, we study the interaction between COX-2 and the lymphangiogenic factor, vascular endothelial growth factor (VEGF)-C, in human lung cancer cells and their implication in patient outcomes. We developed an isopropyl-β-d-thiogalactopyranoside-inducible COX-2 gene expression system in human lung adenocarcinoma CL1.0 cells. We found that VEGF-C gene expression but not VEGF-D was significantly elevated in cells overexpressing COX-2. COX-2-mediated VEGF-C up-regulation was commonly observed in a broad array of non-small cell lung cancer cell lines. The use of pharmacological inhibitors or activators and genetic inhibition by EP receptor-antisense oligonucleotides revealed that prostaglandin EP1 receptor but not other prostaglandin receptors is involved in COX-2-mediated VEGF-C up-regulation. At the mechanistic level, we found that COX-2 expression or prostaglandin E2 (PGE2) treatment could activate the HER-2/Neu tyrosine kinase receptor through the EP1 receptor-dependent pathway and that this activation was essential for VEGF-C induction. The transactivation of HER-2/Neu by PGE2 was inhibited by way of blocking the Src kinase signaling using the specific Src family inhibitor, PP1, or transfection with the mutant dominant negative src plasmid. Src kinase was involved in not only the HER-2/Neu transactivation but also the following VEGF-C up-regulation by PGE2 treatment. In addition, immunohistochemical staining of 59 lung adenocarcinoma specimens showed that COX-2 level was highly correlated with VEGF-C, lymphatic vessels density, and other clinicopathological parameters. Taken together, our results provided evidence that COX-2 up-regulated VEGF-C and promotes lymphangiogenesis in human lung adenocarcinoma via the EP1/Src/HER-2/Neu signaling pathway.


Carcinogenesis | 2011

The EMT regulator slug and lung carcinogenesis

Jin-Yuan Shih; Pan-Chyr Yang

Lung cancer is the leading cause of cancer death worldwide. Cancer metastasis and resistance to treatment (including radiotherapy, chemotherapy and targeted therapy) are two major causes for the poor survival of lung cancer patients. Epithelial-mesenchymal transition (EMT) is involved in cancer cell invasion, resistance to apoptosis and stem cell features. The process of EMT is controlled by a group of transcriptional factors, zinc finger proteins and basic helix-loop-helix factors. Signaling pathways activated by intrinsic or extrinsic stimuli converge on these transcriptional factors and regulated the phenotypic changes of cancer cells. These EMT regulators may play an important role in cancer progression. In lung cancer, Slug is the most thoroughly investigated EMT regulator. The expression of Slug is associated with lung cancer invasion and resistance to target therapy. In this review, we focus on the current understanding of the role of Slug in the carcinogenesis and progression of lung cancer.


Annals of Oncology | 2009

Comparison of epidermal growth factor receptor mutations between primary and corresponding metastatic tumors in tyrosine kinase inhibitor-naive non-small-cell lung cancer

Chien-Hung Gow; Yih-Leong Chang; Yung-Hsiang Hsu; Meng Feng Tsai; Chen-Tu Wu; Chong-Jen Yu; Chih-Hsin Yang; Lee Yc; Pan-Chyr Yang; Jin-Yuan Shih

BACKGROUND Mutations of the epidermal growth factor receptor (EGFR) gene in non-small-cell lung cancer (NSCLC) patients predict the patients who will respond to EGFR tyrosine kinase inhibitor (TKI) treatment. A recent study has suggested that 33% of NSCLC showed primary tumor/metastasis discordance of EGFR expression by immunohistochemistry analysis. We intended to find out whether the EGFR mutations of primary lung cancers are concordant to that of corresponding metastatic tumors. MATERIALS AND METHODS We analyzed EGFR exons 18-21 from paired primary and metastatic tumors in 67 lung cancer patients who had not received TKI before tissues were sampled. RESULTS Using the direct sequencing method, 9 of 18 (50%) patients with EGFR mutation-positive primary lung tumors had lost the mutations in metastases. For 26 patients who were EGFR mutation positive in the metastatic tumors, 17 (65%) were negative in the primary tumors. We analyzed these paired tissues with discrepant EGFR mutations by the Scorpion Amplified Refractory Mutation System assay. Finally, the discordant rate reached 27% (18 of 67 cases). CONCLUSION EGFR mutations in primary lung tumors do not always reflect the same situation in metastases. Analysis of EGFR mutations in the primary lung tumor would be inadequate for planning the use of TKI for advanced NSCLC.

Collaboration


Dive into the Jin-Yuan Shih's collaboration.

Top Co-Authors

Avatar

Pan-Chyr Yang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Chong-Jen Yu

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Yih-Leong Chang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chih-Hsin Yang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Shang-Gin Wu

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Chao-Chi Ho

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Kuan-Yu Chen

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Wei-Yu Liao

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Meng-Feng Tsai

National Taiwan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge