Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jincan Zhang is active.

Publication


Featured researches published by Jincan Zhang.


Journal of the American Chemical Society | 2016

Two-Dimensional (C4H9NH3)2PbBr4 Perovskite Crystals for High-Performance Photodetector

Zhenjun Tan; Yue Wu; Hao Hong; Jianbo Yin; Jincan Zhang; Li Lin; Mingzhan Wang; Xiao Sun; Luzhao Sun; Yucheng Huang; Kaihui Liu; Zhongfan Liu; Hailin Peng

Two-dimensional (2D) layered hybrid perovskites of (RNH3)2PbX4 (R is an alkyl and X is a halide) have been recently synthesized and exhibited rich optical properties including fluorescence and exciton effects. However, few studies on transport and optoelectronic measurements of individual 2D perovskite crystals have been reported, presumably owing to the instability issue during electronic device fabrications. Here we report the first photodetector based on individual 2D (C4H9NH3)2PbBr4 perovskite crystals, built with the protection and top contact of graphene film. Both a high responsivity (∼2100 A/W) and extremely low dark current (∼10-10 A) are achieved with a design of interdigital graphene electrodes. Our study paves the way to build high-performance optoelectronic devices based on the emerging 2D single-crystal perovskite materials.


Advanced Materials | 2016

Surface Monocrystallization of Copper Foil for Fast Growth of Large Single-Crystal Graphene under Free Molecular Flow

Huan Wang; Xiaozhi Xu; Jiayu Li; Li Lin; Luzhao Sun; Xiao Sun; Shuli Zhao; Congwei Tan; Cheng Chen; Wenhui Dang; Huaying Ren; Jincan Zhang; Bing Deng; Ai Leen Koh; Lei Liao; N. Kang; Yulin Chen; Hongqi Xu; Feng Ding; Kaihui Liu; Hailin Peng; Zhongfan Liu

Wafer-sized single-crystalline Cu (100) surface can be readily achieved on stacked polycrystalline Cu foils via simple oxygen chemisorption-induced reconstruction, enabling fast growth of large-scale millimeter-sized single-crystalline graphene arrays under molecular flow. The maximum growth rate can reach 300 μm min-1 , several orders of magnitude higher than previously reported values for millimeter-sized single-crystalline graphene growth on Cu foils.


Advanced Materials | 2016

Rapid Growth of Large Single‐Crystalline Graphene via Second Passivation and Multistage Carbon Supply

Li Lin; Luzhao Sun; Jincan Zhang; Jingyu Sun; Ai Leen Koh; Hailin Peng; Zhongfan Liu

A second passivation and a multistage carbon-source supply (CSS) allow a 50-fold enhancement of the growth rate of large single-crystalline graphene with a record growth rate of 101 μm min(-1) , almost 10 times higher than for pure copper. To this end the CSS is tailored at separate stages of graphene growth on copper foil, combined with an effective suppression of new spontaneous nucleation via second passivation.


Advanced Materials | 2017

Clean Transfer of Large Graphene Single Crystals for High-Intactness Suspended Membranes and Liquid Cells

Jincan Zhang; Li Lin; Luzhao Sun; Yucheng Huang; Ai Leen Koh; Wenhui Dang; Jianbo Yin; Mingzhan Wang; Congwei Tan; Tianran Li; Zhenjun Tan; Zhongfan Liu; Hailin Peng

The atomically thin 2D nature of suspended graphene membranes holds promising in numerous technological applications. In particular, the outstanding transparency to electron beam endows graphene membranes great potential as a candidate for specimen support of transmission electron microscopy (TEM). However, major hurdles remain to be addressed to acquire an ultraclean, high-intactness, and defect-free suspended graphene membrane. Here, a polymer-free clean transfer of sub-centimeter-sized graphene single crystals onto TEM grids to fabricate large-area and high-quality suspended graphene membranes has been achieved. Through the control of interfacial force during the transfer, the intactness of large-area graphene membranes can be as high as 95%, prominently larger than reported values in previous works. Graphene liquid cells are readily prepared by π-π stacking two clean single-crystal graphene TEM grids, in which atomic-scale resolution imaging and temporal evolution of colloid Au nanoparticles are recorded. This facile and scalable production of clean and high-quality suspended graphene membrane is promising toward their wide applications for electron and optical microscopy.


ACS Nano | 2017

Electron–Hole Symmetry Breaking in Charge Transport in Nitrogen-Doped Graphene

Jiayu Li; Li Lin; Dingran Rui; Qiucheng Li; Jincan Zhang; N. Kang; Yanfeng Zhang; Hailin Peng; Zhongfan Liu; Hongqi Xu

Graphitic nitrogen-doped graphene is an excellent platform to study scattering processes of massless Dirac Fermions by charged impurities, in which high mobility can be preserved due to the absence of lattice defects through direct substitution of carbon atoms in the graphene lattice by nitrogen atoms. In this work, we report on electrical and magnetotransport measurements of high-quality graphitic nitrogen-doped graphene. We show that the substitutional nitrogen dopants in graphene introduce atomically sharp scatters for electrons but long-range Coulomb scatters for holes and, thus, graphitic nitrogen-doped graphene exhibits clear electron-hole asymmetry in transport properties. Dominant scattering processes of charge carriers in graphitic nitrogen-doped graphene are analyzed. It is shown that the electron-hole asymmetry originates from a distinct difference in intervalley scattering of electrons and holes. We have also carried out the magnetotransport measurements of graphitic nitrogen-doped graphene at different temperatures and the temperature dependences of intervalley scattering, intravalley scattering, and phase coherent scattering rates are extracted and discussed. Our results provide an evidence for the electron-hole asymmetry in the intervalley scattering induced by substitutional nitrogen dopants in graphene and shine a light on versatile and potential applications of graphitic nitrogen-doped graphene in electronic and valleytronic devices.


Small | 2018

Low-Temperature and Rapid Growth of Large Single-Crystalline Graphene with Ethane

Xiao Sun; Li Lin; Luzhao Sun; Jincan Zhang; Dingran Rui; Jiayu Li; Mingzhan Wang; Congwei Tan; N. Kang; Di Wei; Hongqi Xu; Hailin Peng; Zhongfan Liu

Future applications of graphene rely highly on the production of large-area high-quality graphene, especially large single-crystalline graphene, due to the reduction of defects caused by grain boundaries. However, current large single-crystalline graphene growing methodologies are suffering from low growth rate and as a result, industrial graphene production is always confronted by high energy consumption, which is primarily caused by high growth temperature and long growth time. Herein, a new growth condition achieved via ethane being the carbon feedstock to achieve low-temperature yet rapid growth of large single-crystalline graphene is reported. Ethane condition gives a growth rate about four times faster than methane, achieving about 420 µm min-1 for the growth of sub-centimeter graphene single crystals at temperature about 1000 °C. In addition, the temperature threshold to obtain graphene using ethane can be reduced to 750 °C, lower than the general growth temperature threshold (about 1000 °C) with methane on copper foil. Meanwhile ethane always keeps higher graphene growth rate than methane under the same growth temperature. This study demonstrates that ethane is indeed a potential carbon source for efficient growth of large single-crystalline graphene, thus paves the way for graphene in high-end electronical and optoelectronical applications.


Journal of Applied Physics | 2000

Abnormal selection rules of interface modes in ultrathin GaAs/AlAs superlattice

Shichao Zhang; Jincan Zhang; Chongyin Yang; Lin Li; Lipei Zhang; R. Planel

We observed a violation of the normal Raman selection rule in the resonant Raman spectra of interface (IF) phonon modes of the ultrathin (GaAs)4/(AlAs)2 superlattice. Contrary to the prediction of conventional theories, all four IF modes were observed in both (XX) and (XY) geometries. The result can be interpreted as a consequence of the deep penetration of the electron wave function in the GaAs wells into the AlAs barriers and a lack of definite parity of the electron wave function. Furthermore, our result indicates that conventional theory for bulk (thicker) systems may need to be modified and further developed to be applicable to ultrathin systems.


Nano Research | 2017

Visualizing fast growth of large single-crystalline graphene by tunable isotopic carbon source

Luzhao Sun; Li Lin; Jincan Zhang; Huan Wang; Hailin Peng; Zhongfan Liu

The fast growth of large single-crystalline graphene by chemical vapor deposition on Cu foil remains a challenge for industrial-scale applications. To achieve the fast growth of large single-crystalline graphene, understanding the detailed dynamics governing the entire growth process—including nucleation, growth, and coalescence—is important; however, these remain unexplored. In this study, by using a pulsed carbon isotope labeling technique in conjunction with micro-Raman spectroscopy identification, we visualized the growth dynamics, such as nucleation, growth, and coalescence, during the fast growth of large single-crystalline graphene domains. By tuning the supply of the carbon source, a growth rate of 320 μm/min and the growth of centimeter-sized graphene single crystals were achieved on Cu foil.


Nano Research | 2017

Rapid growth of angle-confined large-domain graphene bicrystals

Huaying Ren; Huan Wang; Li Lin; Miao Tang; Shuli Zhao; Bing Deng; Manish Kumar Priydarshi; Jincan Zhang; Hailin Peng; Zhongfan Liu

In the chemical vapor deposition growth of large-area graphene polycrystalline thin films, the coalescence of randomly oriented graphene domains results in a high density of uncertain grain boundaries (GBs). The structures and properties of various GBs are highly dependent on the misorientation angles between the graphene domains, which can significantly affect the performance of the graphene films and impede their industrial applications. Graphene bicrystals with a specific type of GB can be synthesized via the controllable growth of graphene domains with a predefined lattice orientation. Although the bicrystal has been widely investigated for traditional bulk materials, no successful synthesis strategy has been presented for growing two-dimensional graphene bicrystals. In this study, we demonstrate a simple approach for growing well-aligned large-domain graphene bicrystals with a confined tilt angle of 30° on a facilely recrystallized single-crystal Cu (100) substrate. Control of the density of the GBs with a misorientation angle of 30° was realized via the controllable rapid growth of subcentimeter graphene domains with the assistance of a cooperative catalytic surface-passivation treatment. The large-area production of graphene bicrystals consisting of the sole specific GBs with a tunable density provides a new material platform for fundamental studies and practical applications.


Nano Research | 2018

6-inch uniform vertically-oriented graphene on soda-lime glass for photothermal applications

Haina Ci; Huaying Ren; Yue Qi; Xudong Chen; Zhaolong Chen; Jincan Zhang; Yanfeng Zhang; Zhongfan Liu

Vertically-oriented graphene (VG) has many advantages over flat lying graphene, including a large surface area, exposed sharp edges, and non-stacking three-dimensional geometry. Recently, VG nanosheets assembled on specific substrates have been used for applications in supersensitive gas sensors and high-performance energy storage devices. However, to realize these intriguing applications, the direct growth of high-quality VG on a functional substrate is highly desired. Herein, we report the direct synthesis of VG nanosheets on traditional soda-lime glass due to its low-cost, good transparency, and compatibility with many applications encountered in daily life. This synthesis was achieved by a direct-current plasma enhanced chemical vapor deposition (dc-PECVD) route at 580 °C, which is right below the softening point of the glass, and featured a scale-up size ∼6 inches. Particularly, the fabricated VG nanosheets/glass hybrid materials at a transmittance range of 97%–34% exhibited excellent solarthermal performances, reflected by a 70%–130% increase in the surface temperature under simulated sunlight irradiation. We believe that this graphene glass hybrid material has great potential for use in future transparent “green-warmth” construction materials.

Collaboration


Dive into the Jincan Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge