Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jindong Ding is active.

Publication


Featured researches published by Jindong Ding.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Anti-amyloid therapy protects against retinal pigmented epithelium damage and vision loss in a model of age-related macular degeneration

Jindong Ding; Lincoln V. Johnson; Rolf Herrmann; Sina Farsiu; Stephanie Smith; Marybeth Groelle; Brian E. Mace; Patrick M. Sullivan; Jeffrey A. Jamison; Una Kelly; Ons Harrabi; Sangeetha Subbarao Bollini; Jeanette Dilley; Dione Kobayashi; Bing Kuang; Wenlin Li; Jaume Pons; John C. Lin; Catherine Bowes Rickman

Age-related macular degeneration (AMD) is a leading cause of visual dysfunction worldwide. Amyloid β (Aβ) peptides, Aβ1–40 (Aβ40) and Aβ1–42 (Aβ42), have been implicated previously in the AMD disease process. Consistent with a pathogenic role for Aβ, we show here that a mouse model of AMD that invokes multiple factors that are known to modify AMD risk (aged human apolipoprotein E 4 targeted replacement mice on a high-fat, cholesterol-enriched diet) presents with Aβ-containing deposits basal to the retinal pigmented epithelium (RPE), histopathologic changes in the RPE, and a deficit in scotopic electroretinographic response, which is reflective of impaired visual function. Strikingly, these electroretinographic deficits are abrogated in a dose-dependent manner by systemic administration of an antibody targeting the C termini of Aβ40 and Aβ42. Concomitant reduction in the levels of Aβ and activated complement components in sub-RPE deposits and structural preservation of the RPE are associated with anti-Aβ40/42 antibody immunotherapy and visual protection. These observations are consistent with the reduction in amyloid plaques and improvement of cognitive function in mouse models of Alzheimers disease treated with anti-Aβ antibodies. They also implicate Aβ in the pathogenesis of AMD and identify Aβ as a viable therapeutic target for its treatment.


Vision Research | 2008

Targeting age-related macular degeneration with Alzheimer’s disease based immunotherapies: Anti-amyloid-β antibody attenuates pathologies in an age-related macular degeneration mouse model

Jindong Ding; John C. Lin; Brian E. Mace; Rolf Herrmann; Patrick M. Sullivan; Catherine Bowes Rickman

Age-related macular degeneration (AMD) is a late-onset, neurodegenerative retinal disease that shares several clinical and pathological features with Alzheimers disease (AD) including extracellular deposits containing amyloid-beta (Abeta) peptides. Immunotherapy targeting the Abeta protein has been investigated as a potential treatment for AD. Here, we present the rationale for extending this approach to treat AMD. We tested an anti-Abeta antibody administered systemically in a mouse model of AMD. Histological and functional measurements in treated animals compared to controls showed that following immunotherapy, the amounts of Abeta in the retina and brain were decreased and the ERG deficits in the retina were attenuated. These data support the hypothesis that Abeta is a therapeutic target for AMD.


Autophagy | 2014

Dysregulated autophagy in the RPE is associated with increased susceptibility to oxidative stress and AMD

Sayak K. Mitter; Chunjuan Song; Xiaoping Qi; Haoyu Mao; Haripriya Vittal Rao; Debra Akin; Alfred S. Lewin; Maria B. Grant; William A. Dunn; Jindong Ding; Catherine Bowes Rickman; Michael E. Boulton

Autophagic dysregulation has been suggested in a broad range of neurodegenerative diseases including age-related macular degeneration (AMD). To test whether the autophagy pathway plays a critical role to protect retinal pigmented epithelial (RPE) cells against oxidative stress, we exposed ARPE-19 and primary cultured human RPE cells to both acute (3 and 24 h) and chronic (14 d) oxidative stress and monitored autophagy by western blot, PCR, and autophagosome counts in the presence or absence of autophagy modulators. Acute oxidative stress led to a marked increase in autophagy in the RPE, whereas autophagy was reduced under chronic oxidative stress. Upregulation of autophagy by rapamycin decreased oxidative stress-induced generation of reactive oxygen species (ROS), whereas inhibition of autophagy by 3-methyladenine (3-MA) or by knockdown of ATG7 or BECN1 increased ROS generation, exacerbated oxidative stress-induced reduction of mitochondrial activity, reduced cell viability, and increased lipofuscin. Examination of control human donor specimens and mice demonstrated an age-related increase in autophagosome numbers and expression of autophagy proteins. However, autophagy proteins, autophagosomes, and autophagy flux were significantly reduced in tissue from human donor AMD eyes and 2 animal models of AMD. In conclusion, our data confirm that autophagy plays an important role in protection of the RPE against oxidative stress and lipofuscin accumulation and that impairment of autophagy is likely to exacerbate oxidative stress and contribute to the pathogenesis of AMD.


The Journal of Neuroscience | 2011

ApoER2 Function in the Establishment and Maintenance of Retinal Synaptic Connectivity

Justin Trotter; Martin Klein; Umesh K. Jinwal; Jose F. Abisambra; Chad A. Dickey; Jeremy Tharkur; Irene Masiulis; Jindong Ding; Kirsten G. Locke; Catherine Bowes Rickman; David G. Birch; Edwin J. Weeber; Joachim Herz

The cellular and molecular mechanisms responsible for the development of inner retinal circuitry are poorly understood. Reelin and apolipoprotein E (apoE), ligands of apoE receptor 2 (ApoER2), are involved in retinal development and degeneration, respectively. Here we describe the function of ApoER2 in the developing and adult retina. ApoER2 expression was highest during postnatal inner retinal synaptic development and was considerably lower in the mature retina. Both during development and in the adult, ApoER2 was expressed by A-II amacrine cells. ApoER2 knock-out (KO) mice had rod bipolar morphogenic defects, altered A-II amacrine dendritic development, and impaired rod-driven retinal responses. The presence of an intact ApoER2 NPxY motif, necessary for binding Disabled-1 and transducing the Reelin signal, was also necessary for development of the rod bipolar pathway, while the alternatively spliced exon 19 was not. Mice deficient in another Reelin receptor, very low-density lipoprotein receptor (VLDLR), had normal rod bipolar morphology but altered A-II amacrine dendritic development. VLDLR KO mice also had reductions in oscillatory potentials and delayed synaptic response intervals. Interestingly, age-related reductions in rod and cone function were observed in both ApoER2 and VLDLR KOs. These results support a pivotal role for ApoER2 in the establishment and maintenance of normal retinal synaptic connectivity.


PLOS ONE | 2017

Oxidative stress-mediated NFeκB phosphorylation upregulates p62/SQSTM1 and promotes retinal pigmented epithelial cell survival through increased autophagy

Chunjuan Song; Sayak K. Mitter; Xiaoping Qi; Eleni Beli; Haripriya Vittal Rao; Jindong Ding; Colin S. Ip; Hongmei Gu; Debra Akin; William A. Dunn; Catherine Bowes Rickman; Alfred S. Lewin; Maria B. Grant; Michael E. Boulton

p62 is a scaffolding adaptor implicated in the clearance of protein aggregates by autophagy. Reactive oxygen species (ROS) can either stimulate or inhibit NFκB-mediated gene expression influencing cellular fate. We studied the effect of hydrogen peroxide (H2O2)-mediated oxidative stress and NFκB signaling on p62 expression in the retinal pigment epithelium (RPE) and investigated its role in regulation of autophagy and RPE survival against oxidative damage. Cultured human RPE cell line ARPE-19 and primary human adult and fetal RPE cells were exposed to H2O2-induced oxidative stress. The human apolipoprotein E4 targeted-replacement (APOE4) mouse model of AMD was used to study expression of p62 and other autophagy proteins in the retina. p62, NFκB p65 (total, phosphorylated, nuclear and cytoplasmic) and ATG10 expression was assessed by mRNA and protein analyses. Cellular ROS and mitochondrial superoxide were measured by CM-H2DCFDA and MitoSOX staining respectively. Mitochondrial viability was determined using MTT activity. qPCR-array system was used to investigate autophagic genes affected by p62. Nuclear and cytoplasmic levels of NFκB p65 were evaluated after cellular fractionation by Western blotting. We report that p62 is up-regulated in RPE cells under H2O2-induced oxidative stress and promotes autophagic activity. Depletion of endogenous p62 reduces autophagy by downregulation of ATG10 rendering RPE more susceptible to oxidative damage. NFκB p65 phosphorylation at Ser-536 was found to be critical for p62 upregulation in response to oxidative stress. Proteasome inhibition by H2O2 causes p62-NFκB signaling as antioxidant pre-treatment reversed p62 expression and p65 phosphorylation when RPE was challenged by H2O2 but not when by Lactacystin. p62 protein but not RNA levels are elevated in APOE4-HFC AMD mouse model, suggesting reduction of autophagic flux in disease conditions. Our findings suggest that p62 is necessary for RPE cytoprotection under oxidative stress and functions, in part, by modulating ATG10 expression. NFκB p65 activity may be a critical upstream initiator of p62 expression in RPE cells under oxidative stress.


Advances in Experimental Medicine and Biology | 2014

The Role of Complement Dysregulation in AMD Mouse Models

Jindong Ding; Una Kelly; Marybeth Groelle; Joseph G. Christenbury; Wenlan Zhang; Catherine Bowes Rickman

Variations in several complement genes are now known to be significant risk factors for the development of age-related macular degeneration (AMD). Despite dramatic effects on disease susceptibility, the underlying mechanisms by which common polymorphisms in complement proteins alter disease risk have remained unclear. Genetically modified mice in which the activity of the complement has been altered are available and can be used to investigate the role of complement in the pathogenesis of AMD. In this mini review, we will discuss some existing complement models of AMD and our efforts to develop and characterize the ocular phenotype in a variety of mice in which complement is either chronically activated or inhibited. A spectrum of complement dysregulation was modeled on the APOE4 AMD mouse model by crossing these mice to complement factor H knockout (cfh-/-) mice to test the impact of excess complement activation, and by crossing them to soluble-complement-receptor-1-related protein y (sCrry) mice, in which sCrry acts as a potent inhibitor of mouse complement acting in a manner similar to CFH. In addition, we have also generated humanized CFH mice expressing normal and risk variants of CFH.


Investigative Ophthalmology & Visual Science | 2009

Heparan Sulfate in Human Bruch’s Membrane/Choroid Tissue Increases the Rate of Proteolytic Cleavage of C3b by factors H and I

Una Kelly; Jindong Ding; Gregory S. Hageman; Vadim Y. Arshavsky; Haixiang Jiang; Michael A. Hauser; Michael M. Frank; C. Bowes Rickman


Investigative Ophthalmology & Visual Science | 2011

Development and Characterization of Humanized Complement Factor H (CFH) Transgenic Mice

Jindong Ding; Una Kelly; Stephanie Smith; Marybeth Groelle; Catherine Bowes Rickman


PMC | 2017

Oxidative stress-mediated NFκB phosphorylation upregulates p62/SQSTM1 and promotes retinal pigmented epithelial cell survival through increased autophagy

Chunjuan Song; Sayak K. Mitter; Xiaoping Qi; Eleni Beli; Haripriya Vittal Rao; Jindong Ding; Colin S. Ip; Hongmei Gu; Debra Akin; William A. Dunn; Catherine Bowes Rickman; Alfred S. Lewin; Maria B. Grant; Michael E. Boulton


Publisher | 2016

PPARβ/δ selectively regulates phenotypic features of age-related macular degeneration.

Mayur Choudhary; Jindong Ding; Xiaoping Qi; Michael E. Boulton; Pei-Li Yao; Jeffrey M. Peters; Goldis Malek

Collaboration


Dive into the Jindong Ding's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephanie Smith

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge