Jindong Liu
Civil Aviation Authority of Singapore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jindong Liu.
Frontiers in Plant Science | 2015
Fengmei Gao; Weie Wen; Jindong Liu; Awais Rasheed; Guihong Yin; Xianchun Xia; Xiaoxia Wu; Zhonghu He
Identification of genes for yield components, plant height (PH), and yield-related physiological traits and tightly linked molecular markers is of great importance in marker-assisted selection (MAS) in wheat breeding. In the present study, 246 F8 RILs derived from the cross of Zhou 8425B/Chinese Spring were genotyped using the high-density Illumina iSelect 90K single nucleotide polymorphism (SNP) assay. Field trials were conducted at Zhengzhou and Zhoukou of Henan Province, during the 2012–2013 and 2013–2014 cropping season under irrigated conditions, providing data for four environments. Analysis of variance (ANOVA) of agronomic and physiological traits revealed significant differences (P < 0.01) among RILs, environments, and RILs × environments interactions. Broad-sense heritabilities of all traits including thousand kernel weight (TKW), PH, spike length (SL), kernel number per spike (KNS), spike number/m2 (SN), normalized difference in vegetation index at anthesis (NDVI-A) and at 10 days post-anthesis (NDVI-10), SPAD value of chlorophyll content at anthesis (Chl-A) and at 10 days post-anthesis (Chl-10) ranged between 0.65 and 0.94. A linkage map spanning 3609.4 cM was constructed using 5636 polymorphic SNP markers, with an average chromosome length of 171.9 cM and marker density of 0.64 cM/marker. A total of 866 SNP markers were newly mapped to the hexaploid wheat linkage map. Eighty-six QTL for yield components, PH, and yield-related physiological traits were detected on 18 chromosomes except 1D, 5D, and 6D, explaining 2.3–33.2% of the phenotypic variance. Ten stable QTL were identified across four environments, viz. QTKW.caas-6A.1, QTKW.caas-7AL, QKNS.caas-4AL, QSN.caas-1AL.1, QPH.caas-4BS.2, QPH.caas-4DS.1, QSL.caas-4AS, QSL.caas-4AL.1, QChl-A.caas-5AL, and QChl-10.caas-5BL. Meanwhile, 10 QTL-rich regions were found on chromosome 1BS, 2AL (2), 3AL, 4AL (2), 4BS, 4DS, 5BL, and 7AL exhibiting pleiotropic effects. These QTL or QTL clusters are tightly linked to SNP markers, with genetic distances to the closest SNPs ranging from 0 to 1.5 cM, and could serve as target regions for fine mapping, candidate gene discovery, and MAS in wheat breeding.
Theoretical and Applied Genetics | 2016
Awais Rasheed; Weie Wen; Fengmei Gao; Shengnan Zhai; Hui Jin; Jindong Liu; Qi Guo; Yingjun Zhang; Susanne Dreisigacker; Xianchun Xia; Zhonghu He
Key messageWe developed and validated a robust marker toolkit for high-throughput and cost-effective screening of a large number of functional genes in wheat.AbstractFunctional markers (FMs) are the most valuable markers for crop breeding programs, and high-throughput genotyping for FMs could provide an excellent opportunity to effectively practice marker-assisted selection while breeding cultivars. Here we developed and validated kompetitive allele-specific PCR (KASP) assays for genes that underpin economically important traits in bread wheat including adaptability, grain yield, quality, and biotic and abiotic stress resistances. In total, 70 KASP assays either developed in this study or obtained from public databases were validated for reliability in application. The validation of KASP assays were conducted by (a) comparing the assays with available gel-based PCR markers on 23 diverse wheat accessions, (b) validation of the derived allelic information using phenotypes of a panel comprised of 300 diverse cultivars from China and 13 other countries, and (c) additional testing, where possible, of the assays in four segregating populations. All KASP assays being reported were significantly associated with the relevant phenotypes in the cultivars panel and bi-parental populations, thus revealing potential application in wheat breeding programs. The results revealed 45 times superiority of the KASP assays in speed than gel-based PCR markers. KASP has recently emerged as single-plex high-throughput genotyping technology; this is the first report on high-throughput screening of a large number of functional genes in a major crop. Such assays could greatly accelerate the characterization of crossing parents and advanced lines for marker-assisted selection and can complement the inflexible, high-density SNP arrays. Our results offer a robust and reliable molecular marker toolkit that can contribute towards maximizing genetic gains in wheat breeding programs.
Frontiers in Plant Science | 2017
Zhonghu He; Fengmei Gao; Jindong Liu; Hui Jin; Shengnan Zhai; Yanying Qu; Xianchun Xia
A high-density consensus map is a powerful tool for gene mapping, cloning and molecular marker-assisted selection in wheat breeding. The objective of this study was to construct a high-density, single nucleotide polymorphism (SNP)-based consensus map of common wheat (Triticum aestivum L.) by integrating genetic maps from four recombinant inbred line populations. The populations were each genotyped using the wheat 90K Infinium iSelect SNP assay. A total of 29,692 SNP markers were mapped on 21 linkage groups corresponding to 21 hexaploid wheat chromosomes, covering 2,906.86 cM, with an overall marker density of 10.21 markers/cM. Compared with the previous maps based on the wheat 90K SNP chip detected 22,736 (76.6%) of the SNPs with consistent chromosomal locations, whereas 1,974 (6.7%) showed different chromosomal locations, and 4,982 (16.8%) were newly mapped. Alignment of the present consensus map and the wheat expressed sequence tags (ESTs) Chromosome Bin Map enabled assignment of 1,221 SNP markers to specific chromosome bins and 819 ESTs were integrated into the consensus map. The marker orders of the consensus map were validated based on physical positions on the wheat genome with Spearman rank correlation coefficients ranging from 0.69 (4D) to 0.97 (1A, 4B, 5B, and 6A), and were also confirmed by comparison with genetic position on the previously 40K SNP consensus map with Spearman rank correlation coefficients ranging from 0.84 (6D) to 0.99 (6A). Chromosomal rearrangements reported previously were confirmed in the present consensus map and new putative rearrangements were identified. In addition, an integrated consensus map was developed through the combination of five published maps with ours, containing 52,607 molecular markers. The consensus map described here provided a high-density SNP marker map and a reliable order of SNPs, representing a step forward in mapping and validation of chromosomal locations of SNPs on the wheat 90K array. Moreover, it can be used as a reference for quantitative trait loci (QTL) mapping to facilitate exploitation of genes and QTL in wheat breeding.
Frontiers in Plant Science | 2016
Hui Jin; Weie Wen; Jindong Liu; Shengnan Zhai; Yan Zhang; Jun Yan; Zhiyong Liu; Xianchun Xia; Zhonghu He
Dough rheological and starch pasting properties play an important role in determining processing quality in bread wheat (Triticum aestivum L.). In the present study, a recombinant inbred line (RIL) population derived from a Gaocheng 8901/Zhoumai 16 cross grown in three environments was used to identify quantitative trait loci (QTLs) for dough rheological and starch pasting properties evaluated by Mixograph, Rapid Visco-Analyzer (RVA), and Mixolab parameters using the wheat 90 and 660 K single nucleotide polymorphism (SNP) chip assays. A high-density linkage map constructed with 46,961 polymorphic SNP markers from the wheat 90 and 660 K SNP assays spanned a total length of 4121 cM, with an average chromosome length of 196.2 cM and marker density of 0.09 cM/marker; 6596 new SNP markers were anchored to the bread wheat linkage map, with 1046 and 5550 markers from the 90 and 660 K SNP assays, respectively. Composite interval mapping identified 119 additive QTLs on 20 chromosomes except 4D; among them, 15 accounted for more than 10% of the phenotypic variation across two or three environments. Twelve QTLs for Mixograph parameters, 17 for RVA parameters and 55 for Mixolab parameters were new. Eleven QTL clusters were identified. The closely linked SNP markers can be used in marker-assisted wheat breeding in combination with the Kompetitive Allele Specific PCR (KASP) technique for improvement of processing quality in bread wheat.
PLOS ONE | 2016
Yan Dong; Jindong Liu; Yan Zhang; Hongwei Geng; Awais Rasheed; Yonggui Xiao; Shuanghe Cao; Luping Fu; Jun Yan; Weie Wen; Yong Zhang; Ruilian Jing; Xianchun Xia; Zhonghu He
Water soluble carbohydrates (WSC) in stems play an important role in buffering grain yield in wheat against biotic and abiotic stresses; however, knowledge of genes controlling WSC is very limited. We conducted a genome-wide association study (GWAS) using a high-density 90K SNP array to better understand the genetic basis underlying WSC, and to explore marker-based breeding approaches. WSC was evaluated in an association panel comprising 166 Chinese bread wheat cultivars planted in four environments. Fifty two marker-trait associations (MTAs) distributed across 23 loci were identified for phenotypic best linear unbiased estimates (BLUEs), and 11 MTAs were identified in two or more environments. Liner regression showed a clear dependence of WSC BLUE scores on numbers of favorable (increasing WSC content) and unfavorable alleles (decreasing WSC), indicating that genotypes with higher numbers of favorable or lower numbers of unfavorable alleles had higher WSC content. In silico analysis of flanking sequences of trait-associated SNPs revealed eight candidate genes related to WSC content grouped into two categories based on the type of encoding proteins, namely, defense response proteins and proteins triggered by environmental stresses. The identified SNPs and candidate genes related to WSC provide opportunities for breeding higher WSC wheat cultivars.
Cereal Research Communications | 2009
Li Liu; Zhonghu He; Wujun Ma; Jindong Liu; Xianchun Xia; Roberto J. Peña
Glutenin subunit alleles at the Glu-D3 locus and their effects on dough properties, pan bread, and dry white Chinese noodle (DWCN) qualities were investigated using 106 winter and facultative wheat cultivars and advanced lines. Allele Glu-D3c (42.5%) was the most frequent glutenin subunit, followed by Glu-D3b (25.5%) and Glu-D3a (23.6%). Glu-D3d and Glu-D3f occurred in only three and six cultivars, respectively. The effect of Glu-D3 was significant forDWCNquality, accounting for up to 16% of the variation, but there were no significant differences between individual Glu-D3 alleles on dough properties and qualities of DWCNand pan bread. Interaction effects Glu-A1 × Glu-D3 and Glu-B1 × Glu-D3 were significant for DWCN quality and loaf volume. More work is needed to understand the effects of Glu-D3 variation on the determination of dough properties and end-use quality.
Molecular Breeding | 2017
Pengfei Zhang; Zhonghu He; Xiuling Tian; Fengmei Gao; Dengan Xu; Jindong Liu; Weie Wen; Luping Fu; Genying Li; Xinxia Sui; Xianchun Xia; Chunping Wang; Shuanghe Cao
Trehalose 6-phosphate phosphatase (TPP) dephosphorylates trehalose 6-phosphate to trehalose, an important growth regulator, and is involved in starch accumulation and grain yield. In this study, wheat TPP homologs were isolated from chromosomes 6AL, 6BL, and 6DL, designated as TaTPP-6AL1, TaTPP-6BL1, and TaTPP-6DL1, respectively. Sequence alignment showed a single-nucleotide polymorphism (SNP) at TaTPP-6AL1 locus between cultivars with contrasting thousand grain weight (TGW), forming alleles TaTPP-6AL1a and TaTPP-6AL1b, respectively. A cleaved amplified polymorphic sequence (CAPS) marker, TaTPP-6AL1-CAPS, was developed to differentiate the two alleles. TaTPP-6AL1 was mapped within the interval of IWB65749 and IWB60449 in a recombinant inbred line (RIL) population derived from Zhou8425B/Chinese Spring using the wheat 90K SNP assay. A QTL for TGW identified in the interval explained 12.1–19.1% of the phenotypic variance across five environments. Association analysis on 141 Chinese wheat cultivars also indicated a significant correlation of TaTPP-6AL1 with TGW. In conclusion, TaTPP-6AL1 and its functional marker are valuable to improve grain yield in wheat breeding.
Scientific Reports | 2016
X. Y. Chen; X. Y. Cao; Yujuan Zhang; Shahidul Islam; Jingjuan Zhang; Rongchang Yang; Jindong Liu; Guojun Li; R. Appels; Gabriel Keeble-Gagnère; W. Q. Ji; Zhonghu He; Wujun Ma
The wheat avenin-like proteins (ALP) are considered atypical gluten constituents and have shown positive effects on dough properties revealed using a transgenic approach. However, to date the genetic architecture of ALP genes is unclear, making it impossible to be utilized in wheat breeding. In the current study, three genes of type-b ALPs were identified and mapped to chromosomes 7AS, 4AL and 7DS. The coding gene sequence of both TaALP-7A and TaALP-7D was 855 bp long, encoding two identical homologous 284 amino acid long proteins. TaALP-4A was 858 bp long, encoding a 285 amino acid protein variant. Three alleles were identified for TaALP-7A and four for TaALP-4A. TaALP-7A alleles were of two types: type-1, which includes TaALP-7A1 andTaALP-7A2, encodes mature proteins, while type-2, represented byTaALP-7A3, contains a stop codon in the coding region and thus does not encode a mature protein. Dough quality testing of 102 wheat cultivars established a highly significant association of the type-1 TaALP-7A allele with better wheat processing quality. This allelic effects were confirmed among a range of commercial wheat cultivars. Our research makes the ALP be the first of such genetic variation source that can be readily utilized in wheat breeding.
Molecular Breeding | 2016
Jinping Wang; Weie Wen; Mamoona Hanif; Xianchun Xia; Honggang Wang; Shubing Liu; Jindong Liu; Li Yang; Shuanghe Cao; Zhonghu He
Early flowering 3 (ELF3) is a regulator to modulate photoperiod flowering in Arabidopsis. The homologs of ELF3 in rice and barley also have been identified essential for regulation of flowering time. In the current study, TaELF3 genes, homologs of ELF3 in bread wheat (Triticum aestivum L.), were cloned by a comparative genomics approach and located on homologous group 1 chromosomes, designated as TaELF3-1AL, TaELF3-1BL, and TaELF3-1DL, respectively. A sequence-tagged site (STS) marker was developed based on sequence polymorphism at the TaELF3-1DL locus. A quantitative trait locus (QTL) for heading date (HD) co-segregating with TaELF3-1DL explained 7.7–20.6% of the phenotypic variance in a RIL mapping population derived from the Gaocheng 8901/Zhoumai 16 cross genotyped using the wheat 90K iSelect assay. The late HD allele of TaELF3-1DL was prevalently selected in China’s specific wheat-growing regions and other countries. This study produces novel information in better understanding HD and provides a reliable functional marker for molecular marker-assisted selection in wheat breeding.
Frontiers of Agricultural Science and Engineering | 2016
Wenshuang Li; Shengnan Zhai; Hui Jin; Weie Wen; Jindong Liu; Xianchun Xia; He Zhonghu
Carotenoid content of wheat is an important criterion for prediction of the commercial and nutritional value of products made from bread wheat (Triticum aestivum) cultivars. The objective of this study was to determine the major components of carotenoids in Chinese wheat using ultra performance liquid chromatography (UPLC) including lutein, zeaxanthin, α-carotene and β-carotene. Grain carotenoid content was investigated in 217 cultivars from three major Chinese wheat regions and from seven other countries grown in two environments. Genotype contributed to the majority of variation in carotenoid components. Lutein, zeaxanthin and β-carotene concentrations varied from 18.3 to 100.1, 4.9 to 12.0 and 0.9 to 48.7 μg per 100 g in wheat flour with an average of 40.2, 7.2 and 18.2 μg per 100 g, respectively. Lutein (61.3%) was the main carotenoid component, followed by β-carotene (27.7%) and zeaxanthin (11.0%). No α-carotene was detected. Total carotenoids, lutein, zeaxanthin and β-carotene were all higher in cultivars with the 1BL.1RS translocation compared to those without the translocation. This is the first report on assay of lutein, zeaxanthin and β-carotene concentrations for a large number of wheat cultivars. These data will be useful for genetic improve- ment of wheat carotenoid content and for understanding of the carotenoid biosynthetic pathway in wheat.