Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jing-Juan Xu is active.

Publication


Featured researches published by Jing-Juan Xu.


Analytical Chemistry | 2011

Gold nanoparticle enhanced electrochemiluminescence of CdS thin films for ultrasensitive thrombin detection.

Jing Wang; Yun Shan; Wei-Wei Zhao; Jing-Juan Xu; Hong-Yuan Chen

Interactions between surface plasmons (SP) of metallic surfaces and photoluminescence (PL) of semiconductor nanocrystal (S-NC) surfaces have been extensively investigated, and SP-induced PL enhancement has been used as a sensitive analytical technique. However, this SP induced electrochemiluminescence (ECL) enhancement is rarely studied. In this work, we report greatly enhanced ECL of CdS thin films by gold nanoparticles (Au NPs) for ultrasensitive detection of thrombin. The system was composed of a CdS NC film on glassy carbon electrode (GCE) as ECL emitter attached an aptamer of thrombin. Then, ssDNA-AuNP conjugates hybridized with the aptamer to form a separation length of ca. 12 nm between CdS NCs and Au NPs. The system showed 5-fold enhancement of ECL intensity as compared to that without Au NPs, which might be attributed to the long-distance interaction between the S-NCs and SPR field of noble metal nanoparticles (MNPs).We also found that the enhanced ECL could be influenced by the involving factors such as the separation distance, spectral overlap, and magnetic field. Such enhancement in combination with smart recognition of aptamer and target protein allowed us to construct an ultrasensitive aptasensor for attomolar detection of thrombin. The presence of target protein was reflected by the ECL signal decrease caused by the target-induced removal of ssDNA-AuNP conjugates. The decrease of ECL signal was logarithmically linear with the concentration of thrombin in a wide range from 100 aM to 100 fM. The principle described in this work could be also applied to many other bioassays.


Biosensors and Bioelectronics | 2003

Amperometric hydrogen peroxide biosensor with sol-gel/chitosan network-like film as immobilization matrix.

Gang Wang; Jing-Juan Xu; Hong-Yuan Chen; Zuhong Lu

A new type of sol-gel/organic hybrid composite material based on the cross-linking of natural polymer chitosan with (3-aoryloxypropyl) dimethoxymethylsilane was developed for the fabrication of an amperometric H(2)O(2) biosensor. The composite film was used to immobilize horseradish peroxidase (HRP) on a gold disk electrode. The properties of sol-gel/chitosan and sol-gel/chitosan-HRP films have been carefully characterized by atomic force microscopy and Fourier transform infrared. By using fluorescent label, a protein density on sol-gel/chitosan has been calculated to be 3.14 x 10(12) moleculescm(-2). With the aid of catechol mediator, the biosensor had a fast response of less than 2 s with linear range of 5.0 x 10(-9)-1.0 x 10(-7) mol l(-1) and a detection limit of 2 x 10(-9) mol l(-1). Its current response shows a typical Michaelis-Menten mechanism. The apparent Michaelis-Menten constant K(M)(app) is found to be 1.30 micromol l(-1). The activation energy for enzymatic reaction is calculated to be 8.22 kJ mol(-1). The biosensor retained approximately 75% of its original activity after about 60 days of storage in a phosphate buffer at 4 degrees C.


Biosensors and Bioelectronics | 2009

Label-free photoelectrochemical immunoassay for α-fetoprotein detection based on TiO2/CdS hybrid

Guang-Li Wang; Jing-Juan Xu; Hong-Yuan Chen; Shou-Zhong Fu

A novel photoelectrochemical immunosensor based on TiO(2)/CdS hybrid modified electrode was developed. The TiO(2)/CdS hybrid modified electrode was obtained by alternately dipping the TiO(2) modified indium-tin oxide (ITO) electrode into the [Cd(NH(3))(4)](2+) and S(2-) solution repeatedly. Compared with the routine method using Cd(2+) solution for CdS deposition, the as obtained TiO(2)/CdS electrode showed enhanced photocurrent intensity with fewer coating times. After the ITO/TiO(2)/CdS electrode was coated with chitosan (CS), alpha-fetoprotein (AFP) antibodies were covalently conjugated on the surface of the electrode. Thus, a label-free photoelectrochemical immunosensor for the detection of AFP was developed by monitoring the changes in the photocurrent signals of the electrode resulting from the immunoreaction. The immunosensor displayed a linear response to AFP in the ranges from 50pg/mL to 50ng/mL with a relatively low detection limit of 40pg/ml. The photoelectrochemical results for the detection of AFP in five human sera showed acceptable accuracy. The method is simple, sensitive and specific. Moreover, the studied immunosensor possessed acceptable reproducibility and storage stability. The proposed methodology was potentially attractive for clinical immunoassay.


Analytical Chemistry | 2012

Highly Sensitive Photoelectrochemical Immunoassay with Enhanced Amplification Using Horseradish Peroxidase Induced Biocatalytic Precipitation on a CdS Quantum Dots Multilayer Electrode

Wei-Wei Zhao; Zheng-Yuan Ma; Pei-Pei Yu; Xiao-Ya Dong; Jing-Juan Xu; Hong-Yuan Chen

Herein we demonstrate the protocol of a biocatalytic precipitation (BCP)-based sandwich photoelectrochemical (PEC) horseradish peroxidase (HRP)-linked immunoassay on the basis of their synergy effect for the ultrasensitive detection of mouse IgG (antigen, Ag) as a model protein. The hybrid film consisting of oppositely charged polyelectrolytes and CdS quantum dots (QDs) is developed by the classic layer by layer (LbL) method and then employed as the photoactive antibody (Ab) immobilization matrix for the subsequent sandwich-type Ab-Ag affinity interactions. Improved sensitivity is achieved through using the bioconjugates of HRP-secondary antibodies (Ab(2)). In addition to the much enhanced steric hindrance compared with the original one, the presence of HRP would further stimulate the BCP onto the electrode surface for signal amplification, concomitant to a competitive nonproductive absorption that lowers the photocurrent intensity. As a result of the multisignal amplification in this HRP catalyzed BCP-based PEC immunoassay, it possesses excellent analytical performance. The antigen could be detected from 0.5 pg/mL to 5.0 ng/mL with a detection limit of 0.5 pg/mL.


Langmuir | 2008

Fe3O4/Polypyrrole/Au nanocomposites with core/shell/shell structure: synthesis, characterization, and their electrochemical properties.

Hui Zhang; Xue Zhong; Jing-Juan Xu; Hong-Yuan Chen

Uniform Fe3O4 nanospheres with a diameter of 100 nm were rapidly prepared using a microwave solvothermal method. Then Fe304/polypyrrole (PPy) composite nanospheres with well-defined core/shell structures were obtained through chemical oxidative polymerization of pyrrole in the presence of Fe3O4; the average thickness of the coating shell was about 25 nm. Furthermore, by means of electrostatic interactions, plentiful gold nanoparticles with a diameter of 15 nm were assembled on the surface of Fe3O4/PPy to get Fe3O4/PPy/Au core/shell/shell structure. The morphology, structure, and composition of the products were characterized by transmission electronic microscopy (TEM), scanning electronic microscopy (SEM), X-ray powder diffraction (XRD), and Fourier transform infrared (FT-IR) spectroscopy. The resultant nanocomposites not only have the magnetism of Fe3O4 nanoparticles that make the nanocomposites easily controlled by an external magnetic field but also have the good conductivity and excellent electrochemical and catalytic properties of PPy and Au nanoparticles. Furthermore, the nanocomposites showed excellent electrocatalytic activities to biospecies such as ascorbic acid (AA).


Journal of the American Chemical Society | 2015

Hot Electron of Au Nanorods Activates the Electrocatalysis of Hydrogen Evolution on MoS2 Nanosheets

Yi Shi; Jiong Wang; Chen Wang; Ting-Ting Zhai; Wen-Jing Bao; Jing-Juan Xu; Xing-Hua Xia; Hong-Yuan Chen

Efficient water splitting through electrocatalysis holds great promise for producing hydrogen fuel in modern energy devices. Its real application however suffers from sluggish reaction kinetics due to the lack of high-performance catalysts except noble metals such as platinum. Herein, we report an active system of plasmonic-metal Au nanorods/molybdenum disulfide (MoS2) nanosheets hybrids for the hydrogen evolution reaction (HER). The plasmonic Au-MoS2 hybrids dramatically improve the HER, leading to a ∼3-fold increase of current under excitation of Au localized surface plasmon resonance (LSPR). A turnover of 8.76 s(-1) at 300 mV overpotential is measured under LSPR excitation, which by far exceeds the activity of MoS2 catalysts reported recently. The HER enhancement can be largely attributed to the increase of carrier density in MoS2 induced by the injection of hot electrons of Au nanorods. We demonstrate that the synergistic effect of the hole scavengers can further facilitate electron-hole separation, resulting in a decrease of the overpotential of HER at MoS2 to ∼120 mV. This study highlights how metal LSPR activates the HER and promises novel opportunities for enhancing intrinsic activities of semiconducting materials.


Analytical Chemistry | 2012

In situ enzymatic ascorbic acid production as electron donor for CdS quantum dots equipped TiO2 nanotubes: a general and efficient approach for new photoelectrochemical immunoassay.

Wei-Wei Zhao; Zheng-Yuan Ma; Dong-Yang Yan; Jing-Juan Xu; Hong-Yuan Chen

In this work, a novel photoelectrochemical (PEC) immunoanalysis format was developed for sensitive and specific detection of prostate-specific antigen (PSA) based on an in situ electron donor producing approach. Thioglycolic acid-capped CdS quantum dots (QDs) equipped TiO(2) nanotubes (NTs) were fabricated via a facile electrostatic adsorption method. The coupling of CdS QDs and TiO(2) NTs results in an enhanced excitation and photo-to-electric conversion efficiency. Using alkaline phosphatase catalytic chemistry to in situ generate ascorbic acid for electron donating, an exquisite immunosandwich protocol was successfully constructed for the PSA assay due to the dependence of the photocurrent signal on the concentration of electron donor. This work opens a different perspective for transducer design in PEC detection and provides a general format for future development of PEC immunoanalysis.


Electrochemistry Communications | 2002

Interfacing cytochrome c to electrodes with a DNA – carbon nanotube composite film

Gang Wang; Jing-Juan Xu; Hong-Yuan Chen

Multi-walled carbon nanotube (MWCNT) is successfully immobilized on the surface of platinum electrode by mixing with DNA. The DNA/MWCNT modified electrodes are characterized by electrochemical impedance spectroscopy and cyclic voltammetry. Further research indicates that cytochrome c can strongly adsorbed on the surface of the modified electrode, and forms an approximate monolayer. The immobilized MWCNT can promote the redox of horse heart cytochrome c which gives reversible redox peaks with a formal potential of 81 mV vs SCE.


Analytical Chemistry | 2013

Electrochemiluminescence Ratiometry: A New Approach to DNA Biosensing

Huai-Rong Zhang; Jing-Juan Xu; Hong-Yuan Chen

Inspired by dual-wavelength fluorescence ratiometric method which could reduce the influence from the environmental change, here, we present a novel dual-potential electrochemiluminescence (ECL) ratiometric sensing approach. CdS nanocrystal (NC) and luminol as two different ECL emitters are employed. ECL from CdS NCs coated on glassy carbon electrode at -1.25 V (vs SCE) could be quenched by closely contacted Pt nanoparticles (NPs) via a biological binding event, while ECL from luminol at +0.45 V (vs SCE) could be enhanced by the same Pt NPs, in the presence of their common coreactant of H₂O₂. Thus, the quenching of ECL from CdS NCs and the enhancement of ECL from luminol could indicate the same biological binding event. With the mp53 oncogene as a model DNA molecule, a molecular beacon (MB) containing a 20-base loop, which is complementary with the mp53 oncogene, is immobilized on CdS NCs/GCE first; Pt NPs are then captured on CdS NCs surface by DNA hybridization between the MB and mp53 oncogene labeled on Pt NPs. By measuring the ratio of ECL intensities at two excitation potentials, this approach could sensitively detect the concentration of target DNA in a wide range from 5.0 fM to 1.0 pM. The sensing scheme is general and can be utilized for many other biological binding events.


Biosensors and Bioelectronics | 2009

Dopamine sensitized nanoporous TiO2 film on electrodes: Photoelectrochemical sensing of NADH under visible irradiation

Guang-Li Wang; Jing-Juan Xu; Hong-Yuan Chen

Dopamine-coordinated photoactive TiO(2) nanoporous films with a wide excitation range of light in the visible region (up to 580 nm) were prepared and used for sensitive detection of NADH. Colloidal TiO(2) was firstly covered on an indium-tin oxide (ITO) electrode surface and sintered at 450 degrees C to form a nanoporous TiO(2) film, then the electrode was dipped in a dopamine solution to form a dopamine-TiO(2) charge transfer complex via coordinating dopamine with undercoordinated titanium atoms on the electrode surface. This charge transfer complex provided an anodic photocurrent under visible light and the photocurrent could be largely enhanced by NADH. The photocurrent enhancement might be due to the electron transfer between NADH and the holes localized on dopamine. A new photoelectrochemical methodology for sensitive detection of NADH at a relatively low potential was developed. The detection limit of NADH was 1.4x10(-7) M, and the detection range could extend up to 1.2x10(-4) M. The dopamine-TiO(2) modified electrode exhibits its major advantages such as effective electronic transducer, fast response and easy fabrication for photoelectrochemical determination of NADH. This strategy largely reduces the destructive effect of UV light and the photogenerated holes of illuminated TiO(2) to biomolecules and opens a new avenue for the applications of TiO(2) in photoelectrochemical biosensing.

Collaboration


Dive into the Jing-Juan Xu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge