Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jinghang Xie is active.

Publication


Featured researches published by Jinghang Xie.


Anti-Cancer Drugs | 2009

Downregulation of survivin and activation of caspase-3 through the PI3K/Akt pathway in ursolic acid-induced HepG2 cell apoptosis.

Cong Tang; Yunhua Lu; Jinghang Xie; Fen Wang; Jia-Ning Zou; Jia-Sen Yang; Yingying Xing; Tao Xi

Ursolic acid (UA), a naturally occurring pentacyclic triterpene, is a potent in-vitro anticancer agent, acting through control of growth, apoptosis and differentiation. As the mechanism of its proapoptotic effects on human hepatocellular carcinoma cells has not been extensively studied, we performed an in depth evaluation of the effects of UA on apoptosis in human HepG2 cells. UA was found to inhibit the proliferation of HepG2 cells in a concentration and time-dependent manner. After treatment, cells showed evidence of activation of apoptosis, including the presence of apoptotic bodies and DNA fragmentation. UA-induced apoptosis was accompanied by a significant decrease in bcl-2 and survivin expression, with the corresponding ratio of bax/bcl-2 increased. The treatment with UA also increased the protein level and enzymatic activity of caspase-3. Z-DEVD-fmk, a specific caspase-3 inhibitor, significantly inhibited both the cytotoxic effect and the DNA fragmentation induced by UA, demonstrating the requirement for caspase-3 activity in UA-induced apoptosis. Inactivation of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway was also involved, as inhibition of PI3K by LY294002 significantly increased UA-induced apoptosis. Kinetic experiments indicated that UA downregulated PI3K/p85 subunit (PI3K/p85) and phospho-Akt, before downregulating survivin. The further results also confirmed that LY294002 not only downregulated survivin alone, but considerably enhanced the repression of survivin combined with UA. UA therefore seemed to downregulate the expression of survivin by blocking PI3K/Akt. Taken together, the data suggest that the proapoptotic effect of UA on HepG2 cells is mediated by activation of caspase-3, and is highly correlated with inactivation of PI3K/Akt/survivin pathway.


Cancer Letters | 2009

Knockdown of SMYD3 by RNA interference down-regulates c-Met expression and inhibits cells migration and invasion induced by HGF

Jia-Ning Zou; Shu-Zhen Wang; Jia-Sen Yang; Xue-Gang Luo; Jinghang Xie; Tao Xi

We previously reported that over-expression of SMYD3, a histone H3-K4 specific di- and tri-methyltransferase, plays a key role in cell viability, adhesion, migration and invasion. In this study, we investigated the mechanisms underlying these phenomena and found that knocking down SMYD3 expression in tumor cells significantly reduced the biological function of HGF and inhibited carcinoma cells migration and invasion. Due to the fact that the proto-oncogene c-Met encodes the high-affinity receptor for HGF, and the HGF-c-Met signaling plays a critical role in the tumor genesis, we further identified the partial correlation between SMYD3 and c-Met. The results showed that high expression of c-Met accompanied with over-expression of SMYD3. Silencing SMYD3 expression in tumor cells by specific shRNAs down-regulated c-Met gene transcription, while over-expressing SMYD3 induced c-Met transcription. Moreover, we demonstrated here that two SMYD3 binding sites within the c-Met core promoter region were significant in the transactivation of c-Met. The present findings provide significant insights into the epigenetic regulatory mechanisms of oncogene c-Met expression, and develop the strategies that may inhibit the progression of cancer migration and invasion.


Nature Chemical Biology | 2015

A biomimetic approach for enhancing the in vivo half-life of peptides

Sravan C. Penchala; Mark R. Miller; Arindom Pal; Jin Dong; Nikhil R. Madadi; Jinghang Xie; Hyun Joo; Jerry Tsai; Patrick Batoon; Vyacheslav V. Samoshin; Andreas H. Franz; Trevor Cox; Jesse Miles; William K. Chan; Miki Susanto Park; Mamoun Alhamadsheh

The tremendous therapeutic potential of peptides has not yet been realized, mainly due to their short in vivo half-life. While conjugation to macromolecules has been a mainstay approach for enhancing the half-life of proteins, the steric hindrance of macromolecules often harms the binding of peptides to target receptors, compromising the in vivo efficacy. Here we report a new strategy for enhancing the in vivo half-life of peptides without compromising their potency. Our approach involves endowing peptides with a small-molecule that binds reversibly to the serum protein, transthyretin. Although there are few reversible albumin-binding molecules, we are unaware of designed small molecules that bind reversibly to other serum proteins and are used for half-life extension in vivo. We show here that our strategy was indeed effective in enhancing the half-life of an agonist for GnRH receptor while maintaining its binding affinity, which was translated into superior in vivo efficacy.


Biomicrofluidics | 2015

Quantitative detection of cells expressing BlaC using droplet-based microfluidics for use in the diagnosis of tuberculosis

Fengjiao Lyu; Manqi Xu; Yunfeng Cheng; Jinghang Xie; Jianghong Rao; Sindy K. Y. Tang

This paper describes a method for the quantitative detection of cells expressing BlaC, a β-lactamase naturally expressed by Mycobacterium tuberculosis, intended for the diagnosis of tuberculosis. The method is based on the compartmentalization of bacteria in picoliter droplets at limiting dilutions such that each drop contains one or no cells. The co-encapsulation of a fluorogenic substrate probe for BlaC allows the quantification of bacteria by enumerating the number of fluorescent drops. Quantification of 10 colony forming units per milliliter is demonstrated. Furthermore, the encapsulation of single cell in drops maintains the specificity of the detection scheme even when the concentration of bacteria that do not express BlaC exceeds that expressing BlaC by one million-fold.


Analytical Biochemistry | 2011

Identification of cyclophilin-40-interacting proteins reveals potential cellular function of cyclophilin-40.

Miki Susanto Park; Feixia Chu; Jinghang Xie; Yu Wang; Pompeya Bhattacharya; William K. Chan

Cyclophilin-40 (CyP40) is part of the immunophilin family and is found in Hsp90-containing protein complexes. We were interested in identifying proteins that interact with CyP40. CyP40-interacting proteins in HeLa cells were identified using the tandem affinity purification approach. Adenovirus expressing human CyP40 protein (Ad-CyP40), fused with streptavidin and calmodulin binding peptides at the N terminus, was generated. Proteins were separated on a sodium dodecyl sulfate-polyacrylamide gel electrophoresis gel after tandem affinity purification. Here 10 silver-stained protein bands that were enriched in the Ad-CyP40-infected lysate and the corresponding regions in the control lysate were excised, digested by trypsin, and identified by tandem mass spectrometric analysis. Of 11 interacting proteins that were identified, 4 (RACK1, Ku70, RPS3, and NF45) were expressed in rabbit reticulocyte lysate, bacteria, and MCF-7 cells. We confirmed that these proteins interact with CyP40. We observed that RACK1 suppressed the cobalt chloride-induced, hypoxia response element-dependent luciferase activity in MCF-7 cells but not in MCF-7 stable cells expressing approximately 10% of the cellular CyP40 content. In addition, RACK1 reduced the HIF-1α protein accumulation after cobalt chloride treatment, which was not observed when the CyP40 content was down-regulated. Collectively, we conclude that reduction of the HIF-1 α protein by RACK1 is CyP40-mediated.


Biochemical Pharmacology | 2014

Differential suppression of the aryl hydrocarbon receptor nuclear translocator-dependent function by an aryl hydrocarbon receptor PAS-A-derived inhibitory molecule.

Jinghang Xie; Xin Huang; Miki Susanto Park; Hang M. Pham; William K. Chan

The aryl hydrocarbon receptor (AhR) heterodimerizes with the aryl hydrocarbon receptor nuclear translocator (Arnt) for transcriptional regulation. We generated three N-terminal deletion constructs of the human AhR of 12-24 kDa in size--namely D1, D2, and D3--to suppress the Arnt function. We observed that all three deletions interact with the human Arnt with similar affinities. D2, which contains part of the AhR PAS-A domain and interacts with the PAS-A domain of Arnt, inhibits the formation of the AhR gel shift complex. D2 suppresses the 3-methylcholanthrene-induced, dioxin response element (DRE)-driven luciferase activity in Hep3B cells and exogenous Arnt reverses this D2 suppression. D2 suppresses the induction of CYP1A1 at both the message and protein levels in Hep3B cells; however, the CYP1B1 induction is not affected. D2 suppresses the recruitment of Arnt to the cyp1a1 promoter but not to the cyp1b1 promoter, partly because the AhR/Arnt heterodimer binds better to the cyp1b1 DRE than to the cyp1a1 DRE. Interestingly, D2 has no effect on the cobalt chloride-induced, hypoxia inducible factor-1 (HIF-1)-dependent expression of vegf, aldolase c, and ldh-a messages. Our data reveal that the flanking sequences of the DRE contribute to the binding affinity of the AhR/Arnt heterodimer to its endogenous enhancers and the function of AhR and HIF-1 can be differentially suppressed by the D2 inhibitory molecule.


Science Translational Medicine | 2018

Rapid and specific labeling of single live Mycobacterium tuberculosis with a dual-targeting fluorogenic probe

Yunfeng Cheng; Jinghang Xie; Kyung-Hyun Lee; Rajiv L. Gaur; Aiguo Song; Tingting Dai; Hongjun Ren; Jiannan Wu; Zhaogang Sun; Niaz Banaei; Demir Akin; Jianghong Rao

A dual-targeted fluorogenic probe and microfluidic chip enables single-cell labeling and quantification of live Mycobacterium tuberculosis. Tracking tuberculosis Tuberculosis, a bacterial infection of the lungs, continues to plague countries worldwide. Cheng et al. developed an imaging probe specific for Mycobacterium tuberculosis. The probe fluoresces upon activation by an enzyme in the bacteria, and fluorescence is retained by modification of a second bacterial enzyme required for formation of the bacterial cell wall. The probe could identify single live tuberculosis bacteria from nontuberculosis bacteria and dead bacteria, and was compatible with patient sputum samples. The authors also developed a microfluidic chip to aid in automating live tuberculosis bacterial counts from sputum samples. This probe and chip platform could aid in drug testing and diagnosis. Tuberculosis (TB) remains a public health crisis and a leading cause of infection-related death globally. Although in high demand, imaging technologies that enable rapid, specific, and nongenetic labeling of live Mycobacterium tuberculosis (Mtb) remain underdeveloped. We report a dual-targeting strategy to develop a small molecular probe (CDG-DNB3) that can fluorescently label single bacilli within 1 hour. CDG-DNB3 fluoresces upon activation of the β-lactamase BlaC, a hydrolase naturally expressed in Mtb, and the fluorescent product is retained through covalent modification of the Mtb essential enzyme decaprenylphosphoryl-β-d-ribose 2′-epimerase (DprE1). This dual-targeting probe not only discriminates live from dead Bacillus Calmette-Guérin (BCG) but also shows specificity for Mtb over other bacterial species including 43 nontuberculosis mycobacteria (NTM). In addition, CDG-DNB3 can image BCG phagocytosis in real time, as well as Mtb in patients’ sputum. Together with a low-cost, self-driven microfluidic chip, we have achieved rapid labeling and automated quantification of live BCG. This labeling approach should find many potential applications for research toward TB pathogenesis, treatment efficacy assessment, and diagnosis.


Cancer Research | 2018

Abstract B068: Methionine aminopeptidase II (MetAP2) activated in situ self-assembly of small-molecule probes for imaging prostate cancer

Jinghang Xie; Meghan A. Rice; Yunfeng Cheng; Guosheng Song; Christian A. Kunder; James D. Brooks; Tanya Stoyanova; Jianghong Rao

Prostate cancer is the most common noncutaneous malignancy among men in the United States and a leading cause of cancer death worldwide. The major clinical challenges in prostate cancer diagnosis include accurate staging, localizing tumors within the prostate, and developing imaging prognostic biomarkers. PET is routinely used in the clinical management of many cancers dues to its high sensitivity (10-15 M), spatial resolution (2-4 mm3), rapid whole-body scan times ( Citation Format: Jinghang Xie, Meghan Rice, Yunfeng Cheng, Guosheng Song, Christian Kunder, James D. Brooks, Tanya Stoyanova, Jianghong Rao. Methionine aminopeptidase II (MetAP2) activated in situ self-assembly of small-molecule probes for imaging prostate cancer [abstract]. In: Proceedings of the AACR Special Conference: Prostate Cancer: Advances in Basic, Translational, and Clinical Research; 2017 Dec 2-5; Orlando, Florida. Philadelphia (PA): AACR; Cancer Res 2018;78(16 Suppl):Abstract nr B068.


Chemical Science | 2017

Intramolecular substitution uncages fluorogenic probes for detection of metallo-carbapenemase-expressing bacteria

Aiguo Song; Yunfeng Cheng; Jinghang Xie; Niaz Banaei; Jianghong Rao


Protein Expression and Purification | 2016

Binding studies using Pichia pastoris expressed human aryl hydrocarbon receptor and aryl hydrocarbon receptor nuclear translocator proteins

Yujuan Zheng; Jinghang Xie; Xin Huang; Jin Dong; Miki Susanto Park; William K. Chan

Collaboration


Dive into the Jinghang Xie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Feixia Chu

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge