Jinglei Cheng
Nagoya University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jinglei Cheng.
Journal of Clinical Investigation | 2008
Naonobu Nishino; Yoshikazu Tamori; Sanshiro Tateya; Takayuki Kawaguchi; Tetsuro Shibakusa; Wataru Mizunoya; Kazuo Inoue; Riko Kitazawa; Sohei Kitazawa; Yasushi Matsuki; Ryuji Hiramatsu; Satoru Masubuchi; Asako Omachi; Kazuhiro Kimura; Masayuki Saito; Taku Amo; Shigeo Ohta; Tomohiro Yamaguchi; Takashi Osumi; Jinglei Cheng; Toyoshi Fujimoto; Harumi Nakao; Kazuki Nakao; Atsu Aiba; Hitoshi Okamura; Tohru Fushiki; Masato Kasuga
White adipocytes are unique in that they contain large unilocular lipid droplets that occupy most of the cytoplasm. To identify genes involved in the maintenance of mature adipocytes, we expressed dominant-negative PPARgamma in 3T3-L1 cells and performed a microarray screen. The fat-specific protein of 27 kDa (FSP27) was strongly downregulated in this context. FSP27 expression correlated with induction of differentiation in cultured preadipocytes, and the protein localized to lipid droplets in murine white adipocytes in vivo. Ablation of FSP27 in mice resulted in the formation of multilocular lipid droplets in these cells. Furthermore, FSP27-deficient mice were protected from diet-induced obesity and insulin resistance and displayed an increased metabolic rate due to increased mitochondrial biogenesis in white adipose tissue (WAT). Depletion of FSP27 by siRNA in murine cultured white adipocytes resulted in the formation of numerous small lipid droplets, increased lipolysis, and decreased triacylglycerol storage, while expression of FSP27 in COS cells promoted the formation of large lipid droplets. Our results suggest that FSP27 contributes to efficient energy storage in WAT by promoting the formation of unilocular lipid droplets, thereby restricting lipolysis. In addition, we found that the nature of lipid accumulation in WAT appears to be associated with maintenance of energy balance and insulin sensitivity.
Journal of Cell Science | 2005
Shintaro Ozeki; Jinglei Cheng; Kumi Tauchi-Sato; Naoya Hatano; Hisaaki Taniguchi; Toyoshi Fujimoto
Lipid droplets (LDs) are organelles that store neutral lipids, but their regulatory mechanism is not well understood. In the present study, we identified Rab18 as an LD component of HepG2 cells by proteomic analysis, and confirmed its localization by immunohistochemistry and western blotting. Wild-type and dominant-active Rab18 localized to LDs but the dominant-negative form did not. Endogenous Rab18 coexisted with adipocyte differentiation-related protein (ADRP) in LDs, but the labeling intensity of the two proteins showed clear reciprocity. Consistent with this observation, overexpression of Rab18 induced a decrease in the amounts of ADRP in LDs in HepG2 and BALB/c 3T3 cells. Furthermore, Rab18 overexpression caused close apposition of LDs to membrane cisternae connected to the rough ER. Two other procedures that decrease ADRP, i.e. RNA interference and brefeldin A treatment, induced the same morphological change, indicating that decrease in ADRP was the cause of the LD-ER apposition. In accordance with similar structures found between ER and other organelles, we propose that the ER membrane apposed to LDs should be named the LD-associated membrane, or LAM. The present results suggested that Rab18 regulates LAM formation, which is likely to be involved in mobilizing lipid esters stored in LDs.
Histochemistry and Cell Biology | 2008
Toyoshi Fujimoto; Yuki Ohsaki; Jinglei Cheng; Michitaka Suzuki; Yuki Shinohara
Lipid droplets are depots of neutral lipids that exist virtually in any kind of cell. Recent studies have revealed that the lipid droplet is not a mere lipid blob, but a major contributor not only to lipid homeostasis but also to diverse cellular functions. Because of the unique structure as well as the functional importance in relation to obesity, steatosis, and other prevailing diseases, the lipid droplet is now reborn as a brand new organelle, attracting interests from researchers of many disciplines.
Biochimica et Biophysica Acta | 2009
Yuki Ohsaki; Jinglei Cheng; Michitaka Suzuki; Yuki Shinohara; Akikazu Fujita; Toyoshi Fujimoto
The cytoplasmic lipid droplet (CLD) and very low-density lipoprotein are generated from the lipid ester synthesized in the endoplasmic reticulum. The lipid ester deposited between the two membrane leaflets is supposed to bulge toward the cytoplasm to make a nascent CLD, but its size must be below the resolution limit of conventional techniques and the detectable CLD should only form after acquisition of additional lipid esters. The CLD is different from vesicular organelles in that the internal content is highly hydrophobic and the shape is invariably spherical. Due to its unique characteristics, quantitative discordance between the surface and the volume may occur in the growth and/or involution processes of the CLD. The possibility that these processes may give rise to the structural and functional diversities of the CLD is discussed.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Akikazu Fujita; Jinglei Cheng; Kumi Tauchi-Sato; Tadaomi Takenawa; Toyoshi Fujimoto
Multiple functionally independent pools of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] have been postulated to occur in the cell membrane, but the existing techniques lack sufficient resolution to unequivocally confirm their presence. To analyze the distribution of PI(4,5)P2 at the nanoscale, we developed an electron microscopic technique that probes the freeze-fractured membrane preparation by the pleckstrin homology domain of phospholipase C-δ1. This method does not require chemical fixation or expression of artificial probes, it is applicable to any cell in vivo and in vitro, and it can define the PI(4,5)P2 distribution quantitatively. By using this method, we found that PI(4,5)P2 is highly concentrated at the rim of caveolae both in cultured fibroblasts and mouse smooth muscle cells in vivo. PI(4,5)P2 was also enriched in the coated pit, but only a low level of clustering was observed in the flat undifferentiated membrane. When cells were treated with angiotensin II, the PI(4,5)P2 level in the undifferentiated membrane decreased to 37.9% within 10 sec and then returned to the initial level. Notably, the PI(4,5)P2 level in caveolae showed a slower but more drastic change and decreased to 20.6% at 40 sec, whereas the PI(4,5)P2 level in the coated pit was relatively constant and decreased only to 70.2% at 10 sec. These results show the presence of distinct PI(4,5)P2 pools in the cell membrane and suggest a unique role for caveolae in phosphoinositide signaling.
Molecular Biology of the Cell | 2012
Michitaka Suzuki; Toshihiko Otsuka; Yuki Ohsaki; Jinglei Cheng; Takako Taniguchi; Hisashi Hashimoto; Hisaaki Taniguchi; Toyoshi Fujimoto
Apolipoprotein B-100 after lipidation is dislocated from the ER lumen to the cytoplasmic surface of lipid droplets for proteasomal degradation. UBXD8 in lipid droplets and Derlin-1 in the ER membrane interact with each other and with ApoB and are engaged in the pre- and postdislocation steps, respectively.
Developmental Cell | 2015
Kohei Arasaki; Hiroaki Shimizu; Hirofumi Mogari; Naoki Nishida; Naohiko Hirota; Akiko Furuno; Yoshihisa Kudo; Misuzu Baba; Norio Baba; Jinglei Cheng; Toyoshi Fujimoto; Naotada Ishihara; Carolina Ortiz-Sandoval; Lael D. Barlow; Arun Raturi; Naoshi Dohmae; Yuichi Wakana; Hiroki Inoue; Katsuko Tani; Joel B. Dacks; Thomas Simmen; Mitsuo Tagaya
Recent evidence suggests that endoplasmic reticulum (ER) tubules mark the sites where the GTPase Drp1 promotes mitochondrial fission via a largely unknown mechanism. Here, we show that the SNARE protein syntaxin 17 (Syn17) is present on raft-like structures of ER-mitochondria contact sites and promotes mitochondrial fission by determining Drp1 localization and activity. The hairpin-like C-terminal hydrophobic domain, including Lys-254, but not the SNARE domain, is important for this regulation. Syn17 also regulates ER Ca(2+) homeostasis and interferes with Rab32-mediated regulation of mitochondrial dynamics. Starvation disrupts the Syn17-Drp1 interaction, thus favoring mitochondrial elongation during autophagy. Because we also demonstrate that Syn17 is an ancient SNARE, our findings suggest that Syn17 is one of the original key regulators for ER-mitochondria contact sites present in the last eukaryotic common ancestor. As such, Syn17 acts as a switch that responds to nutrient conditions and integrates functions for the ER and autophagosomes with mitochondrial dynamics.
Histochemistry and Cell Biology | 2009
Jinglei Cheng; Akikazu Fujita; Yuki Ohsaki; Michitaka Suzuki; Yuki Shinohara; Toyoshi Fujimoto
The lipid droplet (LD) is an organelle with a lipid ester core and a surface phospholipid monolayer. The mechanism of LD biogenesis is not well understood. The present study aimed to elucidate the LD growth process, for which we developed a new electron microscopic method that quantifies the proportion of existing and newly synthesized triglycerides in individual LDs. Our method takes advantage of the reactivity of unsaturated fatty acids and osmium tetroxide, which imparts LDs an electron density that reflects fatty acid composition. With this method, existing triglyceride-rich LDs in 3Y1 fibroblasts were observed to incorporate newly synthesized triglycerides at a highly uniform rate. This uniformity and its persistence even after microtubules were depolymerized suggest that triglycerides in fibroblasts are synthesized in the local vicinity of individual LDs and then incorporated. In contrast, LDs in 3T3-L1 adipocytes showed heterogeneity in the rate at which lipid esters were incorporated, indicating different mechanisms of LD growth in fibroblasts and adipocytes.
Nature Communications | 2014
Jinglei Cheng; Akikazu Fujita; Hayashi Yamamoto; Tsuyako Tatematsu; Soichiro Kakuta; Keisuke Obara; Yoshinori Ohsumi; Toyoshi Fujimoto
Phosphatidylinositol 3-kinase is indispensable for autophagy but it is not well understood how its product, phosphatidylinositol 3-phosphate (PtdIns(3)P), participates in the biogenesis of autophagic membranes. Here, by using quick-freezing and freeze-fracture replica labelling, which enables determination of the nanoscale distributions of membrane lipids, we show that PtdIns(3)P in yeast autophagosomes is more abundant in the luminal leaflet (the leaflet facing the closed space between the outer and inner autophagosomal membranes) than in the cytoplasmic leaflet. This distribution is drastically different from that of the mammalian autophagosome in which PtdIns(3)P is confined to the cytoplasmic leaflet. In mutant yeast lacking two cytoplasmic phosphatases, ymr1Δ and sjl3Δ, PtdIns(3)P in the autophagosome is equally abundant in the two membrane leaflets, suggesting that the PtdIns(3)P asymmetry in wild-type yeast is generated by unilateral hydrolysis. The observed differences in PtdIns(3)P distribution suggest that autophagy in yeast and mammals may involve substantially different processes.
Journal of Cell Biology | 2016
Yuki Ohsaki; Takeshi Kawai; Yukichika Yoshikawa; Jinglei Cheng; Eija Jokitalo; Toyoshi Fujimoto
PML-II plays a critical role in generating nuclear lipid droplets, which are associated with promyelocytic leukemia nuclear bodies as well as with the extension of the inner nuclear membrane.