Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Toyoshi Fujimoto is active.

Publication


Featured researches published by Toyoshi Fujimoto.


Journal of Clinical Investigation | 2008

FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets

Naonobu Nishino; Yoshikazu Tamori; Sanshiro Tateya; Takayuki Kawaguchi; Tetsuro Shibakusa; Wataru Mizunoya; Kazuo Inoue; Riko Kitazawa; Sohei Kitazawa; Yasushi Matsuki; Ryuji Hiramatsu; Satoru Masubuchi; Asako Omachi; Kazuhiro Kimura; Masayuki Saito; Taku Amo; Shigeo Ohta; Tomohiro Yamaguchi; Takashi Osumi; Jinglei Cheng; Toyoshi Fujimoto; Harumi Nakao; Kazuki Nakao; Atsu Aiba; Hitoshi Okamura; Tohru Fushiki; Masato Kasuga

White adipocytes are unique in that they contain large unilocular lipid droplets that occupy most of the cytoplasm. To identify genes involved in the maintenance of mature adipocytes, we expressed dominant-negative PPARgamma in 3T3-L1 cells and performed a microarray screen. The fat-specific protein of 27 kDa (FSP27) was strongly downregulated in this context. FSP27 expression correlated with induction of differentiation in cultured preadipocytes, and the protein localized to lipid droplets in murine white adipocytes in vivo. Ablation of FSP27 in mice resulted in the formation of multilocular lipid droplets in these cells. Furthermore, FSP27-deficient mice were protected from diet-induced obesity and insulin resistance and displayed an increased metabolic rate due to increased mitochondrial biogenesis in white adipose tissue (WAT). Depletion of FSP27 by siRNA in murine cultured white adipocytes resulted in the formation of numerous small lipid droplets, increased lipolysis, and decreased triacylglycerol storage, while expression of FSP27 in COS cells promoted the formation of large lipid droplets. Our results suggest that FSP27 contributes to efficient energy storage in WAT by promoting the formation of unilocular lipid droplets, thereby restricting lipolysis. In addition, we found that the nature of lipid accumulation in WAT appears to be associated with maintenance of energy balance and insulin sensitivity.


Journal of Cell Science | 2005

Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane.

Shintaro Ozeki; Jinglei Cheng; Kumi Tauchi-Sato; Naoya Hatano; Hisaaki Taniguchi; Toyoshi Fujimoto

Lipid droplets (LDs) are organelles that store neutral lipids, but their regulatory mechanism is not well understood. In the present study, we identified Rab18 as an LD component of HepG2 cells by proteomic analysis, and confirmed its localization by immunohistochemistry and western blotting. Wild-type and dominant-active Rab18 localized to LDs but the dominant-negative form did not. Endogenous Rab18 coexisted with adipocyte differentiation-related protein (ADRP) in LDs, but the labeling intensity of the two proteins showed clear reciprocity. Consistent with this observation, overexpression of Rab18 induced a decrease in the amounts of ADRP in LDs in HepG2 and BALB/c 3T3 cells. Furthermore, Rab18 overexpression caused close apposition of LDs to membrane cisternae connected to the rough ER. Two other procedures that decrease ADRP, i.e. RNA interference and brefeldin A treatment, induced the same morphological change, indicating that decrease in ADRP was the cause of the LD-ER apposition. In accordance with similar structures found between ER and other organelles, we propose that the ER membrane apposed to LDs should be named the LD-associated membrane, or LAM. The present results suggested that Rab18 regulates LAM formation, which is likely to be involved in mobilizing lipid esters stored in LDs.


Histochemistry and Cell Biology | 2008

Lipid droplets: a classic organelle with new outfits

Toyoshi Fujimoto; Yuki Ohsaki; Jinglei Cheng; Michitaka Suzuki; Yuki Shinohara

Lipid droplets are depots of neutral lipids that exist virtually in any kind of cell. Recent studies have revealed that the lipid droplet is not a mere lipid blob, but a major contributor not only to lipid homeostasis but also to diverse cellular functions. Because of the unique structure as well as the functional importance in relation to obesity, steatosis, and other prevailing diseases, the lipid droplet is now reborn as a brand new organelle, attracting interests from researchers of many disciplines.


Cold Spring Harbor Perspectives in Biology | 2011

Not Just Fat: The Structure and Function of the Lipid Droplet

Toyoshi Fujimoto; Robert G. Parton

Lipid droplets (LDs) are independent organelles that are composed of a lipid ester core and a surface phospholipid monolayer. Recent studies have revealed many new proteins, functions, and phenomena associated with LDs. In addition, a number of diseases related to LDs are beginning to be understood at the molecular level. It is now clear that LDs are not an inert store of excess lipids but are dynamically engaged in various cellular functions, some of which are not directly related to lipid metabolism. Compared to conventional membrane organelles, there are still many uncertainties concerning the molecular architecture of LDs and how each function is placed in a structural context. Recent findings and remaining questions are discussed.


Journal of Histochemistry and Cytochemistry | 2002

Immunoelectron Microscopic Localization of Cholesterol Using Biotinylated and Non-cytolytic Perfringolysin O:

Wiebke Möbius; Yoshiko Ohno-Iwashita; Elly van Donselaar; Viola Oorschot; Yukiko Shimada; Toyoshi Fujimoto; Harry F. G. Heijnen; Hans J. Geuze; Jan W. Slot

We used a proteolytically modified and biotinylated derivative of the cholesterol-binding θ-toxin (perfringolysin O) to localize cholesterol-rich membranes in cryosections of cultured human lymphoblastoid cells (RN) by electron microscopy. We developed a fixation and immunolabeling procedure to improve the preservation of membranes and minimize the extraction and dislocalization of cholesterol on thin sections. We also labeled the surface of living cells and applied high-pressure freezing and subsequent fixation of cryosections during thawing. Cholesterol labeling was found at the plasma membrane, with strongest labeling on filopodium-like processes. Strong labeling was also associated with internal vesicles of multivesicular bodies (MVBs) and similar vesicles at the cell surface after secretion (exosomes). Tubulovesicular elements in close vicinity of endosomes and the Golgi complex were often positive as well, but the surrounding membrane of MVBs and the Golgi cisternae appeared mostly negative. Treatment of cells with methyl-β-cyclodextrin completely abolished the labeling for cholesterol. Our results show that the θ-toxin derivative, when used in combination with improved fixation and high-pressure freezing, represents a useful tool for the localization of membrane cholesterol in ultrathin cryosections.


Biochimica et Biophysica Acta | 2009

Biogenesis of cytoplasmic lipid droplets: From the lipid ester globule in the membrane to the visible structure

Yuki Ohsaki; Jinglei Cheng; Michitaka Suzuki; Yuki Shinohara; Akikazu Fujita; Toyoshi Fujimoto

The cytoplasmic lipid droplet (CLD) and very low-density lipoprotein are generated from the lipid ester synthesized in the endoplasmic reticulum. The lipid ester deposited between the two membrane leaflets is supposed to bulge toward the cytoplasm to make a nascent CLD, but its size must be below the resolution limit of conventional techniques and the detectable CLD should only form after acquisition of additional lipid esters. The CLD is different from vesicular organelles in that the internal content is highly hydrophobic and the shape is invariably spherical. Due to its unique characteristics, quantitative discordance between the surface and the volume may occur in the growth and/or involution processes of the CLD. The possibility that these processes may give rise to the structural and functional diversities of the CLD is discussed.


Proceedings of the National Academy of Sciences of the United States of America | 2009

A distinct pool of phosphatidylinositol 4,5-bisphosphate in caveolae revealed by a nanoscale labeling technique

Akikazu Fujita; Jinglei Cheng; Kumi Tauchi-Sato; Tadaomi Takenawa; Toyoshi Fujimoto

Multiple functionally independent pools of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] have been postulated to occur in the cell membrane, but the existing techniques lack sufficient resolution to unequivocally confirm their presence. To analyze the distribution of PI(4,5)P2 at the nanoscale, we developed an electron microscopic technique that probes the freeze-fractured membrane preparation by the pleckstrin homology domain of phospholipase C-δ1. This method does not require chemical fixation or expression of artificial probes, it is applicable to any cell in vivo and in vitro, and it can define the PI(4,5)P2 distribution quantitatively. By using this method, we found that PI(4,5)P2 is highly concentrated at the rim of caveolae both in cultured fibroblasts and mouse smooth muscle cells in vivo. PI(4,5)P2 was also enriched in the coated pit, but only a low level of clustering was observed in the flat undifferentiated membrane. When cells were treated with angiotensin II, the PI(4,5)P2 level in the undifferentiated membrane decreased to 37.9% within 10 sec and then returned to the initial level. Notably, the PI(4,5)P2 level in caveolae showed a slower but more drastic change and decreased to 20.6% at 40 sec, whereas the PI(4,5)P2 level in the coated pit was relatively constant and decreased only to 70.2% at 10 sec. These results show the presence of distinct PI(4,5)P2 pools in the cell membrane and suggest a unique role for caveolae in phosphoinositide signaling.


Journal of Virology | 2004

Human Coronavirus 229E Binds to CD13 in Rafts and Enters the Cell through Caveolae

Ryuji Nomura; Asuka Kiyota; Etsuko Suzaki; Katsuko Kataoka; Yoshihide Ohe; Kaoru Miyamoto; Takao Senda; Toyoshi Fujimoto

ABSTRACT CD13, a receptor for human coronavirus 229E (HCoV-229E), was identified as a major component of the Triton X-100-resistant membrane microdomain in human fibroblasts. The incubation of living fibroblasts with an anti-CD13 antibody on ice gave punctate labeling that was evenly distributed on the cell surface, but raising the temperature to 37°C before fixation caused aggregation of the labeling. The aggregated labeling of CD13 colocalized with caveolin-1 in most cells. The HCoV-229E virus particle showed a binding and redistribution pattern that was similar to that caused by the anti-CD13 antibody: the virus bound to the cell evenly when incubated on ice but became colocalized with caveolin-1 at 37°C; importantly, the virus also caused sequestration of CD13 to the caveolin-1-positive area. Electron microscopy confirmed that HCoV-229E was localized near or at the orifice of caveolae after incubation at 37°C. The depletion of plasmalemmal cholesterol with methyl β-cyclodextrin significantly reduced the HCoV-229E redistribution and subsequent infection. A caveolin-1 knockdown by RNA interference also reduced the HCoV-229E infection considerably. The results indicate that HCoV-229E first binds to CD13 in the Triton X-100-resistant microdomain, then clusters CD13 by cross-linking, and thereby reaches the caveolar region before entering cells.


Journal of Virology | 2010

Infectivity of Hepatitis C Virus Is Influenced by Association with Apolipoprotein E Isoforms

Takayuki Hishiki; Yuko Shimizu; Reiri Tobita; Kazuo Sugiyama; Kazuya Ogawa; Kenji Funami; Yuki Ohsaki; Toyoshi Fujimoto; Hiroshi Takaku; Takaji Wakita; Thomas Baumert; Yusuke Miyanari; Kunitada Shimotohno

ABSTRACT Hepatitis C virus (HCV) is a causative agent of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV in circulating blood associates with lipoproteins such as very low density lipoprotein (VLDL) and low-density lipoprotein (LDL). Although these associations suggest that lipoproteins are important for HCV infectivity, the roles of lipoproteins in HCV production and infectivity are not fully understood. To clarify the roles of lipoprotein in the HCV life cycle, we analyzed the effect of apolipoprotein E (ApoE), a component of lipoprotein, on virus production and infectivity. The production of infectious HCV was significantly reduced by the knockdown of ApoE. When an ApoE mutant that fails to be secreted into the culture medium was used, the amount of infectious HCV in the culture medium was dramatically reduced; the infectious HCV accumulated inside these cells, suggesting that infectious HCV must associate with ApoE prior to virus release. We performed rescue experiments in which ApoE isoforms were ectopically expressed in cells depleted of endogenous ApoE. The ectopic expression of the ApoE2 isoform, which has low affinity for the LDL receptor (LDLR), resulted in poor recovery of infectious HCV, whereas the expression of other isoforms, ApoE3 and ApoE4, rescued the production of infectious virus, raising it to an almost normal level. Furthermore, we found that the infectivity of HCV required both the LDLR and scavenger receptor class B, member I (SR-BI), ligands for ApoE. These findings indicate that ApoE is an essential apolipoprotein for HCV infectivity.


Journal of Electron Microscopy | 2011

Lipid droplets: size matters

Michitaka Suzuki; Yuki Shinohara; Yuki Ohsaki; Toyoshi Fujimoto

The lipid droplet (LD), an organelle that exists ubiquitously in various organisms, from bacteria to mammals, has attracted much attention from both medical and cell biology fields. The LD in white adipocytes is often treated as the prototype LD, but is rather a special example, considering that its size, intracellular localization and molecular composition are vastly different from those of non-adipocyte LDs. These differences confer distinct properties on adipocyte and non-adipocyte LDs. In this article, we address the current understanding of LDs by discussing the differences between adipocyte and non-adipocyte LDs.

Collaboration


Dive into the Toyoshi Fujimoto's collaboration.

Top Co-Authors

Avatar

Kazuo Ogawa

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroshi Kogo

Fujita Health University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge