Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jingna Zhang is active.

Publication


Featured researches published by Jingna Zhang.


PLOS ONE | 2013

Negative emotion regulation in patients with posttraumatic stress disorder.

Kunlin Xiong; Ye Zhang; Mingguo Qiu; Jingna Zhang; Linqiong Sang; Li Wang; Bing Xie; Jian Wang; Min Li

Objective To explore the neural mechanisms of negative emotion regulation in patients with post-traumatic stress disorder (PTSD). Methods Twenty PTSD patients and 20 healthy subjects were recruited. Event-related functional magnetic resonance imaging (fMRI) was used to investigate the modification of emotional responses to negative stimuli. Participants were required to regulate their emotional reactions according to the auditory regulation instructions via headphones, to maintain, enhance or diminish responses to negative stimuli during fMRI scans. Results The PTSD group showed poorer modification performance than the control group when diminishing responses to negative stimuli. On fMRI, the PTSD group showed decreased activation in the inferior frontal cortex, inferior parietal lobule, insula and putamen, and increased activation in posterior cingulate cortex and amygdala during up-regulation of negative emotion. Similar decreased activation regions were found during down-regulation of negative emotion, but no increased activation was found. Conclusion Trauma exposure might impair the ability to down-regulate negative emotion. The present findings will improve our understanding of the neural mechanisms of emotion regulation underlying PTSD.


PLOS ONE | 2015

Alteration of Brain Functional Networks in Early-Stage Parkinson’s Disease: A Resting-State fMRI Study

Linqiong Sang; Jiuquan Zhang; Li Wang; Jingna Zhang; Ye Zhang; Pengyue Li; Jian Wang; Mingguo Qiu

Although alterations of topological organization have previously been reported in the brain functional network of Parkinson’s disease (PD) patients, the topological properties of the brain network in early-stage PD patients who received antiparkinson treatment are largely unknown. This study sought to determine the topological characteristics of the large-scale functional network in early-stage PD patients. First, 26early-stage PD patients (Hoehn and Yahr stage:1-2) and 30 age-matched normal controls were scanned using resting-state functional MRI. Subsequently, graph theoretical analysis was employed to investigate the abnormal topological configuration of the brain network in early-stage PD patients. We found that both the PD patient and control groups showed small-world properties in their functional brain networks. However, compared with the controls, the early-stage PD patients exhibited abnormal global properties, characterized by lower global efficiency. Moreover, the modular structure and the hub distribution were markedly altered in early-stage PD patients. Furthermore, PD patients exhibited increased nodal centrality, primarily in the bilateral pallidum, the inferior parietal lobule, and the medial superior frontal gyrus, and decreased nodal centrality in the caudate nucleus, the supplementary motor areas, the precentral gyrus, and the middle frontal gyrus. There were significant negative correlations between the Unified Parkinson Disease Rating Scale motor scores and nodal centralities of superior parietal gyrus. These results suggest that the topological organization of the brain functional network was altered in early-stage PD patients who received antiparkinson treatment, and we speculated that the antiparkinson treatment may affect the efficiency of the brain network to effectively relieve clinical symptoms of PD.


Brain Research | 2014

White matter integrity and cognition in mild traumatic brain injury following motor vehicle accident

Kunlin Xiong; Yongshan Zhu; Yulong Zhang; Zhiyong Yin; Jingna Zhang; Mingguo Qiu; Weiguo Zhang

The aim of this study is to explore the white matter structure integrity in patients with mild traumatic brain injury (mTBI) using diffusion tensor imaging (DTI), and to analyze the relationship between the white matter structure integrity and cognitive impairment of patients with mTBI. Twenty-five patients with mTBI and 25 healthy control subjects were studied with conventional MR imaging and diffusion tensor imaging. Fractional anisotropy (FA) and mean diffusivity (MD) maps of patients with mTBI were calculated and compared, with these control maps using tract-based spatial statistics (TBSS). Significantly lower fractional anisotropy was found in patients in the uncinate fasciculus, superior longitudinal fasciculus, inferior longitudinal fasciculus, and internal capsule. Mean diffusivity was significantly elevated in the body of corpus callosum, uncinate fasciculus, superior longitudinal fasciculus, and internal capsule in the mTBI group compared with the control group (P<0.05). The mTBI group showed a significant negative correlation between the elevated mean diffusivity of the uncinate fasciculus and the working memory index (WMI) (R(2)=0.51, P<0.05), and the internal capsule of MD values was significantly negatively related to processing speed index (PSI) (R(2)=0.45, P<0.05). There was a positive correlation between the FA value of the uncinate fasciculus and Mini Mental State Examination (MMSE) in the mTBI patient group (R(2)=0.36, P<0.05). TBSS analysis of DTI suggests that patients with mTBI have focal axonal injury, and the pathophysiology is significantly related to the MMSE and IQ of mTBI patients. Diffusion tensor imaging can be a powerful technique for in vivo detection of mTBI, and can help in the diagnosis of patients with mTBI.


Brain Research | 2013

Negative emotional distraction on neural circuits for working memory in patients with posttraumatic stress disorder

Jingna Zhang; Kun-lining Xiong; Mingguo Qiu; Ye Zhang; Bing Xie; Jian Wang; Min Li; Han Chen; Yu Zhang; Jiajia Zhang

OBJECTIVE To study the neural mechanism for the impact of negative emotional distraction on working memory in patients with posttraumatic stress disorder (PTSD) resulting from exposure to motor vehicle accidents. METHODS Twenty PTSD patients and 20 healthy subjects were recruited. Event-related functional magnetic resonance imaging (fMRI) was used to investigate the effects of negative and neutral distractors on a delayed-response working memory task. All experiments were performed on a 3.0T MRI scanner, and the functional imaging data were analyzed using SPM8 software. RESULTS The PTSD group showed poorer performance than the control group when the negative distractors were presented during the delay phase of working memory. The functional imaging indicated that, in the presence of negative relative to neutral distractors, the PTSD group showed higher activation in the emotion processing regions, including amygdala, precuneus and fusiform gyrus, but lower activation in the inferior frontal cortex, insula and left supramarginal gyrus than the control group. CONCLUSION Based on the results that activation in the PTSD patients in the presence of negative distractors increased in the emotion-related brain regions but decreased in the working memory-related brain regions, we may conclude that the neural basis of working memory is impaired by negative emotion in PTSD patients.


Neuroradiology | 2016

Relationship between functional connectivity and motor function assessment in stroke patients with hemiplegia: a resting-state functional MRI study.

Ye Zhang; Hongliang Liu; Li Wang; Jun Yang; Rubing Yan; Jingna Zhang; Linqiong Sang; Pengyue Li; Jian Wang; Mingguo Qiu

IntroductionResting-state functional magnetic resonance imaging (fMRI) has been used to examine the brain mechanisms of stroke patients with hemiplegia, but the relationship between functional connectivity (FC) and treatment-induced motor function recovery has not yet been fully investigated. This study aimed to identify the brain FC changes in stroke patients and study the relationship between FC and motor function assessment using the resting-state fMRI.MethodsSeventeen stroke patients with hemiplegia and fifteen healthy control subjects (HCSs) were recruited in this study. We compared the FC between the ipsilesional primary motor cortex (M1) and the whole brain of the patients with the FC of the HCSs and studied the FC changes in the patients before and after conventional rehabilitation and motor imagery therapy. Additionally, correlations between the FC change and motor function of the patients were studied.ResultsCompared to the HCSs, the FC in the patient group was significantly increased between the ipsilesional M1 and the ipsilesional inferior parietal cortex, frontal gyrus, supplementary motor area (SMA), and contralesional angular and decreased between the ipsilesional M1 and bilateral M1. After the treatment, the FC between the ipsilesional M1 and contralesional M1 increased while the FC between the ipsilesional M1 and ipsilesional SMA and paracentral lobule decreased. A statistically significant correlation was found between the FC change in the bilateral M1 and the Fugl-Meyer assessment (FMA) score change.ConclusionOur results revealed an abnormal motor network after stroke and suggested that the FC could serve as a biomarker of motor function recovery in stroke patients with hemiplegia.


BioMed Research International | 2016

Conditional Granger Causality Analysis of Effective Connectivity during Motor Imagery and Motor Execution in Stroke Patients

Li Wang; Jingna Zhang; Ye Zhang; Rubing Yan; Hongliang Liu; Mingguo Qiu

Aims. Motor imagery has emerged as a promising technique for the improvement of motor function following stroke, but the mechanism of functional network reorganization in patients during this process remains unclear. The aim of this study is to evaluate the cortical motor network patterns of effective connectivity in stroke patients. Methods. Ten stroke patients with right hand hemiplegia and ten normal control subjects were recruited. We applied conditional Granger causality analysis (CGCA) to explore and compare the functional connectivity between motor execution and motor imagery. Results. Compared with the normal controls, the patient group showed lower effective connectivity to the primary motor cortex (M1), the premotor cortex (PMC), and the supplementary motor area (SMA) in the damaged hemisphere but stronger effective connectivity to the ipsilesional PMC and M1 in the intact hemisphere during motor execution. There were tighter connections in the cortical motor network in the patients than in the controls during motor imagery, and the patients showed more effective connectivity in the intact hemisphere. Conclusions. The increase in effective connectivity suggests that motor imagery enhances core corticocortical interactions, promotes internal interaction in damaged hemispheres in stroke patients, and may facilitate recovery of motor function.


Brain Research | 2017

Abnormal functional networks in resting-state of the sub-cortical chronic stroke patients with hemiplegia

Ye Zhang; Li Wang; Jun Yang; Rubing Yan; Jingna Zhang; Linqiong Sang; Pengyue Li; Hongliang Liu; Mingguo Qiu

The aim of this study is to identify the properties of the motor network and the default-mode network (DMN) of the sub-cortical chronic stroke patients, and to study the relationship between the network connectivity and the neurological scales of the stroke patients. Twenty-eight chronic stroke patients (28-77days post-stroke) and twenty-eight healthy control subjects (HCs) were recruited. Independent component analysis (ICA) was performed to obtain the motor network and the DMN. Two sample t-tests was used to compare the differences of the motor network and the DMN between the patients and HCs. Additionally, correlations between the network connectivity and the behavioral scores of the stroke patients were studied. Compared with the HCs, the motor network connectivity of the stroke patients was significantly increased in the contralesional superior parietal lobule, but decreased in ipsilesional M1. The DMN connectivity of the stroke patients was significantly increased in the contralesional middle frontal gyrus, but decreased in bilateral precuneus, ipsilesional supramarginal and angular gyrus. Moreover, the motor network connectivity of the contralesional superior parietal lobule was positively correlated with the Fugl-Meyer assessment (FMA) score of the stroke patients. Our results showed abnormal motor network and DMN during the resting-state of the stroke patients, suggesting that resting-state network connectivity could serve as biomarkers for future stroke studies. Brain-behavior relationships could be taken into account while evaluating stroke patients.


Neuroscience | 2017

Disrupted structural and functional connectivity networks in ischemic stroke patients

Jingna Zhang; Ye Zhang; Li Wang; Linqiong Sang; Jun Yang; Rubing Yan; Pengyue Li; Jian Wang; Mingguo Qiu

Local lesions caused by stroke may result in extensive structural and functional reorganization in the brain. Previous studies of this phenomenon have focused on specific brain networks. Here, we aimed to discover abnormalities in whole-brain networks and to explore the decoupling between structural and functional connectivity in patients with stroke. Fifteen ischemic stroke patients and 23 normal controls (NCs) were recruited in this study. A graph theoretical analysis was employed to investigate the abnormal topological properties of structural and functional brain networks in patients with stroke. Both patients with stroke and NCs exhibited small-world organization in brain networks. However, compared to NCs, patients with stroke exhibited abnormal global properties characterized by a higher characteristic path length and lower global efficiency. Furthermore, patients with stroke showed altered nodal characteristics, primarily in certain motor- and cognition-related regions. Positive correlations between the nodal degree of the inferior parietal lobule and the Fugl-Meyer Assessment (FMA) score and between the nodal betweenness centrality of the posterior cingulate gyrus (PCG) and immediate recall were observed in patients with stroke. Most importantly, the strength of the structural-functional connectivity network coupling was decreased, and the coupling degree was related to the FMA score of patients, suggesting that decoupling may provide a novel biomarker for the assessment of motor impairment in patients with stroke. Thus, the topological organization of brain networks is altered in patients with stroke, and our results provide insights into the structural and functional organization of the brain after stroke from the viewpoint of network topology.


Digital Medicine | 2016

Motor cortex activation during motor imagery of the upper limbs in stroke patients

Li Wang; Jingna Zhang; Ye Zhang; Linqiong Sang; Rubing Yan; Chen Liu; Mingguo Qiu

Objective: The objective of this study was to analyze the functional brain activation in acute stroke patients during motor execution (ME) and motor imagery (MI) and to discuss the association between damaged brain structure and impaired brain function in stroke patients. Methods: The functional magnetic resonance imaging technique was used to observe activation of the brain during ME/MI of the upper limbs in 12 acute stroke patients (with the left brain damage) and 12 healthy controls. Results: During ME, the stroke patients appeared to be activated more strongly than the healthy controls in the ipsilateral primary motor areas. The MI of the affected hand in the stroke patients was not significantly different from that of the healthy hand. The nonmotor areas, the angular gyrus, and the fusiform gyrus were also activated during ME/MI. Conclusion: Structural damage in the brain is associated with the activation of brain function in acute stroke patients. Ipsilateral inhibition is reduced in stroke patients during ME and the damaged brain needs to recruit more brain areas to complete the desired action due to motion difficulties resulting from brain damage. The participation of nonmotor brain areas in ME/MI indicates that cortical reorganization may contribute to the restoration of motor function following stroke. MI can be used to improve injured brain areas, helping with the rehabilitation of stroke patients.


The Scientific World Journal | 2012

Diffusion tensor imaging-based research on human white matter anatomy.

Mingguo Qiu; Jingna Zhang; Ye Zhang; Qi-Yu Li; Bing Xie; Jian Wang

The aim of this study is to investigate the white matter by the diffusion tensor imaging and the Chinese visible human dataset and to provide the 3D anatomical data of the corticospinal tract for the neurosurgical planning by studying the probabilistic maps and the reproducibility of the corticospinal tract. Diffusion tensor images and high-resolution T1-weighted images of 15 healthy volunteers were acquired; the DTI data were processed using DtiStudio and FSL software. The FA and color FA maps were compared with the sectional images of the Chinese visible human dataset. The probability maps of the corticospinal tract were generated as a quantitative measure of reproducibility for each voxel of the stereotaxic space. The fibers displayed by the diffusion tensor imaging were well consistent with the sectional images of the Chinese visible human dataset and the existing anatomical knowledge. The three-dimensional architecture of the white matter fibers could be clearly visualized on the diffusion tensor tractography. The diffusion tensor tractography can establish the 3D probability maps of the corticospinal tract, in which the degree of intersubject reproducibility of the corticospinal tract is consistent with the previous architectonic report. DTI is a reliable method of studying the fiber connectivity in human brain, but it is difficult to identify the tiny fibers. The probability maps are useful for evaluating and identifying the corticospinal tract in the DTI, providing anatomical information for the preoperative planning and improving the accuracy of surgical risk assessments preoperatively.

Collaboration


Dive into the Jingna Zhang's collaboration.

Top Co-Authors

Avatar

Mingguo Qiu

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Ye Zhang

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Li Wang

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Linqiong Sang

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Rubing Yan

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Jian Wang

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Pengyue Li

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Bing Xie

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Jun Yang

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Hongliang Liu

Third Military Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge