Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jingon Jang is active.

Publication


Featured researches published by Jingon Jang.


Nanotechnology | 2013

Oxygen environmental and passivation effects on molybdenum disulfide field effect transistors

Woanseo Park; Juhun Park; Jingon Jang; Hyungwoo Lee; Hyunhak Jeong; Kyungjune Cho; Seunghun Hong; Takhee Lee

We investigated the effects of passivation on the electrical characteristics of molybdenum disulfide (MoS(2)) field effect transistors (FETs) under nitrogen, vacuum, and oxygen environments. When the MoS(2) FETs were exposed to oxygen, the on-current decreased and the threshold voltage shifted in the positive gate bias direction as a result of electrons being trapped by the adsorbed oxygen at the MoS(2) surface. In contrast, the electrical properties of the MoS(2) FETs changed only slightly in the different environments when a passivation layer was created using polymethyl methacrylate (PMMA). Specifically, the carrier concentration of unpassivated devices was reduced to 6.5 × 10(15) cm(-2) in oxygen from 16.3 × 10(15) cm(-2) in nitrogen environment. However, in PMMA-passivated devices, the carrier concentration remained nearly unchanged in the range of 1-3 × 10(15) cm(-2) regardless of the environment. Our study suggests that surface passivation is important for MoS(2)-based electronic devices.


ACS Nano | 2013

Electric stress-induced threshold voltage instability of multilayer MoS2 field effect transistors.

Kyungjune Cho; Woanseo Park; Juhun Park; Hyunhak Jeong; Jingon Jang; Tae-Young Kim; Woong-Ki Hong; Seunghun Hong; Takhee Lee

We investigated the gate bias stress effects of multilayered MoS2 field effect transistors (FETs) with a back-gated configuration. The electrical stability of the MoS2 FETs can be significantly influenced by the electrical stress type, relative sweep rate, and stress time in an ambient environment. Specifically, when a positive gate bias stress was applied to the MoS2 FET, the current of the device decreased and its threshold shifted in the positive gate bias direction. In contrast, with a negative gate bias stress, the current of the device increased and the threshold shifted in the negative gate bias direction. The gate bias stress effects were enhanced when a gate bias was applied for a longer time or when a slower sweep rate was used. These phenomena can be explained by the charge trapping due to the adsorption or desorption of oxygen and/or water on the MoS2 surface with a positive or negative gate bias, respectively, under an ambient environment. This study will be helpful in understanding the electrical-stress-induced instability of the MoS2-based electronic devices and will also give insight into the design of desirable devices for electronics applications.


ACS Nano | 2015

Electrical and Optical Characterization of MoS2 with Sulfur Vacancy Passivation by Treatment with Alkanethiol Molecules.

Kyungjune Cho; Mi-Sook Min; Tae Young Kim; Hyunhak Jeong; Jinsu Pak; Jae-Keun Kim; Jingon Jang; Seok Joon Yun; Young Hee Lee; Woong-Ki Hong; Takhee Lee

We investigated the physical properties of molybdenum disulfide (MoS2) atomic crystals with a sulfur vacancy passivation after treatment with alkanethiol molecules including their electrical, Raman, and photoluminescence (PL) characteristics. MoS2, one of the transition metal dichalcogenide materials, is a promising two-dimensional semiconductor material with good physical properties. It is known that sulfur vacancies exist in MoS2, resulting in the n-type behavior of MoS2. The sulfur vacancies on the MoS2 surface tend to form covalent bonds with sulfur-containing groups. In this study, we deposited alkanethiol molecules on MoS2 field effect transistors (FETs) and then characterized the electrical properties of the devices before and after the alkanethiol treatment. We observed that the electrical characteristics of MoS2 FETs dramatically changed after the alkanethiol treatment. We also observed that the Raman and PL spectra of MoS2 films changed after the alkanethiol treatment. These effects are attributed to the thiol (-SH) end groups in alkanethiols bonding at sulfur vacancy sites, thus altering the physical properties of the MoS2. This study will help us better understand the electrical and optical properties of MoS2 and suggest a way of tailoring the properties of MoS2 by passivating a sulfur vacancy with thiol molecules.


Nanotechnology | 2014

Gate-bias stress-dependent photoconductive characteristics of multi-layer MoS2 field-effect transistors

Kyungjune Cho; Taeyoung Kim; Woanseo Park; Juhun Park; Dongku Kim; Jingon Jang; Hyunhak Jeong; Seunghun Hong; Takhee Lee

We investigated the photoconductive characteristics of molybdenum disulfide (MoS2) field-effect transistors (FETs) that were fabricated with mechanically exfoliated multi-layer MoS2 flakes. Upon exposure to UV light, we observed an increase in the MoS2 FET current because of electron-hole pair generation. The MoS2 FET current decayed after the UV light was turned off. The current decay processes were fitted using exponential functions with different decay characteristics. Specifically, a fast decay was used at the early stages immediately after turning off the light to account for the exciton relaxation, and a slow decay was used at later stages long after turning off the light due to charge trapping at the oxygen-related defect sites on the MoS2 surface. This photocurrent decay phenomenon of the MoS2 FET was influenced by the measurement environment (i.e., vacuum or oxygen environment) and the electrical gate-bias stress conditions (positive or negative gate biases). The results of this study will enhance the understanding of the influence of environmental and measurement conditions on the optical and electrical properties of MoS2 FETs.


Nanoscale | 2015

Enhancement of photodetection characteristics of MoS2 field effect transistors using surface treatment with copper phthalocyanine

Jinsu Pak; Jingon Jang; Kyungjune Cho; Taeyoung Kim; Jae-Keun Kim; Younggul Song; Woong-Ki Hong; Mi-Sook Min; Hyoyoung Lee; Takhee Lee

Recently, two-dimensional materials such as molybdenum disulfide (MoS2) have been extensively studied as channel materials for field effect transistors (FETs) because MoS2 has outstanding electrical properties such as a low subthreshold swing value, a high on/off ratio, and good carrier mobility. In this study, we characterized the electrical and photo-responsive properties of MoS2 FET when stacking a p-type organic copper phthalocyanine (CuPc) layer on the MoS2 surface. We observed that the threshold voltage of MoS2 FET could be controlled by stacking the CuPc layers due to a charge transfer phenomenon at the interface. Particularly, we demonstrated that CuPc/MoS2 hybrid devices exhibited high performance as a photodetector compared with the pristine MoS2 FETs, caused by more electron-hole pairs separation at the p-n interface. Furthermore, we found the optimized CuPc thickness (∼2 nm) on the MoS2 surface for the best performance as a photodetector with a photoresponsivity of ∼1.98 A W(-1), a detectivity of ∼6.11 × 10(10) Jones, and an external quantum efficiency of ∼12.57%. Our study suggests that the MoS2 vertical hybrid structure with organic material can be promising as efficient photodetecting devices and optoelectronic circuits.


ACS Nano | 2015

Graphene/Pentacene Barristor with Ion-Gel Gate Dielectric: Flexible Ambipolar Transistor with High Mobility and On/Off Ratio

Gwangtaek Oh; Jin-Soo Kim; Ji Hoon Jeon; EunA Won; Jong Wan Son; Duk Hyun Lee; Cheol Kyeom Kim; Jingon Jang; Takhee Lee; Bae Ho Park

High-quality channel layer is required for next-generation flexible electronic devices. Graphene is a good candidate due to its high carrier mobility and unique ambipolar transport characteristics but typically shows a low on/off ratio caused by gapless band structure. Popularly investigated organic semiconductors, such as pentacene, suffer from poor carrier mobility. Here, we propose a graphene/pentacene channel layer with high-k ion-gel gate dielectric. The graphene/pentacene device shows both high on/off ratio and carrier mobility as well as excellent mechanical flexibility. Most importantly, it reveals ambipolar behaviors and related negative differential resistance, which are controlled by external bias. Therefore, our graphene/pentacene barristor with ion-gel gate dielectric can offer various flexible device applications with high performances.


ACS Nano | 2015

1/f Noise Scaling Analysis in Unipolar-Type Organic Nanocomposite Resistive Memory.

Younggul Song; Hyunhak Jeong; Jingon Jang; Tae-Young Kim; Daekyoung Yoo; Young-Rok Kim; Heejun Jeong; Takhee Lee

We studied noise characteristics of a nanocomposite of polyimide (PI) and phenyl-C61-butyric acid methyl ester (PCBM) (denoted as PI:PCBM), a composite for the organic nonvolatile resistive memory material. The current fluctuations were investigated over a bias range that covers various intermediate resistive states and negative differential resistance (NDR) in organic nanocomposite unipolar resistive memory devices. From the analysis of the 1/f(γ) type noises, scaling behavior between the relative noise power spectral density S̃ and resistance R was observed, indicating a percolating behavior. Considering a linear rate equation of the charge trapping-detrapping at traps, the percolation behavior and NDR could be understood by the modulation of the conductive phase fraction φ with an external bias. This study can enhance the understanding of the NDR phenomena in organic nanocomposite unipolar resistive memory devices in terms of the current path formation and the memory switching.


Applied Physics Letters | 2014

The application of orthogonal photolithography to micro-scale organic field effect transistors and complementary inverters on flexible substrate

Jingon Jang; Younggul Song; Hyun-Taek Oh; Daekyoung Yoo; Dongku Kim; Hyungwoo Lee; Seunghun Hong; Jin-Kyun Lee; Takhee Lee

Micro-scale pentacene organic field effect transistors (OFETs) were fabricated on a flexible poly(ethylene terephthalate) (PET) substrate. By applying a highly fluorinated developing solvents and its compatible photoresist materials, it has become possible to make the micro-scale patterning for organic devices using standard photolithography without damaging the underlying polymer layers. The flexible pentacene OFETs with 3 μm-sized channel length exhibited stable electrical characteristics under bent configurations and under a large number of repetitive bending cycles. Furthermore, we demonstrated micro-scale organic complementary inverters on a flexible PET substrate using p-type pentacene and n-type copper hexadecafluorophthalocyanine materials.


Scientific Reports | 2016

Trap-mediated electronic transport properties of gate-tunable pentacene/MoS2 p-n heterojunction diodes

Jae-Keun Kim; Kyungjune Cho; Tae-Young Kim; Jinsu Pak; Jingon Jang; Younggul Song; Young-Rok Kim; Barbara Yuri Choi; Seungjun Chung; Woong-Ki Hong; Takhee Lee

We investigated the trap-mediated electronic transport properties of pentacene/molybdenum disulphide (MoS2) p-n heterojunction devices. We observed that the hybrid p-n heterojunctions were gate-tunable and were strongly affected by trap-assisted tunnelling through the van der Waals gap at the heterojunction interfaces between MoS2 and pentacene. The pentacene/MoS2 p-n heterojunction diodes had gate-tunable high ideality factor, which resulted from trap-mediated conduction nature of devices. From the temperature-variable current-voltage measurement, a space-charge-limited conduction and a variable range hopping conduction at a low temperature were suggested as the gate-tunable charge transport characteristics of these hybrid p-n heterojunctions. Our study provides a better understanding of the trap-mediated electronic transport properties in organic/2-dimensional material hybrid heterojunction devices.


Scientific Reports | 2016

Origin of multi-level switching and telegraphic noise in organic nanocomposite memory devices.

Younggul Song; Hyunhak Jeong; Seungjun Chung; Geun Ho Ahn; Tae-Young Kim; Jingon Jang; Daekyoung Yoo; Heejun Jeong; Ali Javey; Takhee Lee

The origin of negative differential resistance (NDR) and its derivative intermediate resistive states (IRSs) of nanocomposite memory systems have not been clearly analyzed for the past decade. To address this issue, we investigate the current fluctuations of organic nanocomposite memory devices with NDR and the IRSs under various temperature conditions. The 1/f noise scaling behaviors at various temperature conditions in the IRSs and telegraphic noise in NDR indicate the localized current pathways in the organic nanocomposite layers for each IRS. The clearly observed telegraphic noise with a long characteristic time in NDR at low temperature indicates that the localized current pathways for the IRSs are attributed to trapping/de-trapping at the deep trap levels in NDR. This study will be useful for the development and tuning of multi-bit storable organic nanocomposite memory device systems.

Collaboration


Dive into the Jingon Jang's collaboration.

Top Co-Authors

Avatar

Takhee Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Younggul Song

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Daekyoung Yoo

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Kyungjune Cho

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Hyunhak Jeong

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Seunghun Hong

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Seungjun Chung

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mi-Sook Min

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Jinsu Pak

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge