Jingrui Xing
Nagoya University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jingrui Xing.
Molecular Psychiatry | 2017
Itaru Kushima; Branko Aleksic; Masahiro Nakatochi; Teppei Shimamura; Tomoko Shiino; Akira Yoshimi; Hiroki Kimura; Yuto Takasaki; Chenyao Wang; Jingrui Xing; Kanako Ishizuka; Tomoko Oya-Ito; Yasuyuki Nakamura; Yuko Arioka; Takuji Maeda; Mitsuko Yamamoto; Mami Yoshida; H Noma; S Hamada; Miyuki Morikawa; Yota Uno; Takashi Okada; Tetsuya Iidaka; Shuji Iritani; Toshimichi Yamamoto; Mitsuhiro Miyashita; Akiko Kobori; Mayumi Arai; Masanari Itokawa; M C Cheng
Recent schizophrenia (SCZ) studies have reported an increased burden of de novo copy number variants (CNVs) and identified specific high-risk CNVs, although with variable phenotype expressivity. However, the pathogenesis of SCZ has not been fully elucidated. Using array comparative genomic hybridization, we performed a high-resolution genome-wide CNV analysis on a mainly (92%) Japanese population (1699 SCZ cases and 824 controls) and identified 7066 rare CNVs, 70.0% of which were small (<100 kb). Clinically significant CNVs were significantly more frequent in cases than in controls (odds ratio=3.04, P=9.3 × 10−9, 9.0% of cases). We confirmed a significant association of X-chromosome aneuploidies with SCZ and identified 11 de novo CNVs (e.g., MBD5 deletion) in cases. In patients with clinically significant CNVs, 41.7% had a history of congenital/developmental phenotypes, and the rate of treatment resistance was significantly higher (odds ratio=2.79, P=0.0036). We found more severe clinical manifestations in patients with two clinically significant CNVs. Gene set analysis replicated previous findings (e.g., synapse, calcium signaling) and identified novel biological pathways including oxidative stress response, genomic integrity, kinase and small GTPase signaling. Furthermore, involvement of multiple SCZ candidate genes and biological pathways in the pathogenesis of SCZ was suggested in established SCZ-associated CNV loci. Our study shows the high genetic heterogeneity of SCZ and its clinical features and raises the possibility that genomic instability is involved in its pathogenesis, which may be related to the increased burden of de novo CNVs and variable expressivity of CNVs.
Schizophrenia Bulletin | 2015
Hiroki Kimura; Daisuke Tsuboi; Chenyao Wang; Itaru Kushima; Takayoshi Koide; Masashi Ikeda; Yoshimi Iwayama; Tomoko Toyota; Noriko Yamamoto; Shohko Kunimoto; Yukako Nakamura; Akira Yoshimi; Masahiro Banno; Jingrui Xing; Yuto Takasaki; Mami Yoshida; Branko Aleksic; Yota Uno; Takashi Okada; Tetsuya Iidaka; Toshiya Inada; Michio Suzuki; Hiroshi Ujike; Hiroshi Kunugi; Tadafumi Kato; Takeo Yoshikawa; Nakao Iwata; Kozo Kaibuchi; Norio Ozaki
BACKGROUND Nuclear distribution E homolog 1 (NDE1), located within chromosome 16p13.11, plays an essential role in microtubule organization, mitosis, and neuronal migration and has been suggested by several studies of rare copy number variants to be a promising schizophrenia (SCZ) candidate gene. Recently, increasing attention has been paid to rare single-nucleotide variants (SNVs) discovered by deep sequencing of candidate genes, because such SNVs may have large effect sizes and their functional analysis may clarify etiopathology. METHODS AND RESULTS We conducted mutation screening of NDE1 coding exons using 433 SCZ and 145 pervasive developmental disorders samples in order to identify rare single nucleotide variants with a minor allele frequency ≤5%. We then performed genetic association analysis using a large number of unrelated individuals (3554 SCZ, 1041 bipolar disorder [BD], and 4746 controls). Among the discovered novel rare variants, we detected significant associations between SCZ and S214F (P = .039), and between BD and R234C (P = .032). Furthermore, functional assays showed that S214F affected axonal outgrowth and the interaction between NDE1 and YWHAE (14-3-3 epsilon; a neurodevelopmental regulator). CONCLUSIONS This study strengthens the evidence for association between rare variants within NDE1 and SCZ, and may shed light into the molecular mechanisms underlying this severe psychiatric disorder.
Scientific Reports | 2016
Jingrui Xing; Hiroki Kimura; Chenyao Wang; Kanako Ishizuka; Itaru Kushima; Yuko Arioka; Akira Yoshimi; Yukako Nakamura; Tomoko Shiino; Tomoko Oya-Ito; Yuto Takasaki; Yota Uno; Takashi Okada; Tetsuya Iidaka; Branko Aleksic; Daisuke Mori; Norio Ozaki
PSD-95 associated PSD proteins play a critical role in regulating the density and activity of glutamate receptors. Numerous previous studies have shown an association between the genes that encode these proteins and schizophrenia (SZ) and autism spectrum disorders (ASD), which share a substantial portion of genetic risks. We sequenced the protein-encoding regions of DLG1, DLG2, DLG4, DLGAP1, DLGAP2, and SynGAP in 562 cases (370 SZ and 192 ASD patients) on the Ion PGM platform. We detected 26 rare (minor allele frequency <1%), non-synonymous mutations, and conducted silico functional analysis and pedigree analysis when possible. Three variants, G344R in DLG1, G241S in DLG4, and R604C in DLGAP2, were selected for association analysis in an independent sample set of 1315 SZ patients, 382 ASD patients, and 1793 healthy controls. Neither DLG4-G241S nor DLGAP2-R604C was detected in any samples in case or control sets, whereas one additional SZ patient was found that carried DLG1-G344R. Our results suggest that rare missense mutations in the candidate PSD genes may increase susceptibility to SZ and/or ASD. These findings may strengthen the theory that rare, non-synonymous variants confer substantial genetic risks for these disorders.
Schizophrenia Research | 2014
Chenyao Wang; Takayoshi Koide; Hiroki Kimura; Shohko Kunimoto; Akira Yoshimi; Yukako Nakamura; Itaru Kushima; Masahiro Banno; Naoko Kawano; Yuto Takasaki; Jingrui Xing; Yukihiro Noda; Akihiro Mouri; Branko Aleksic; Masashi Ikeda; Takashi Okada; Tetsuya Iidaka; Toshiya Inada; Nakao Iwata; Norio Ozaki
The ubiquitin ligase F-box protein 45 (FBXO45) is critical for synaptogenesis, neuronal migration, and synaptic transmission. FBXO45 is included in the 3q29 microdeletion region that confers a significant risk for schizophrenia, as shown by rare structural variant studies. Thus, FBXO45 is considered a prominent candidate for mediating schizophrenia pathogenesis. Here, we investigated rare, deleterious single nucleotide variants (SNVs) as well as small insertions and deletions (INDELs) in FBXO45 that may contribute to schizophrenia susceptibility. Using Sanger sequencing, we performed mutation screening in FBXO45 exon regions in 337 schizophrenia patients. Novel missense or nonsense variants were followed up with a genetic association study in an independent sample set of 601 schizophrenia patients and 916 controls, a case report for assessing the clinical consequence of the mutations, a pedigree study for measuring mutation inheritance in the probands family, bioinformatics analyses for evaluating mutation effect on protein structure and function, and mRNA expression analysis for examining mutation transcriptional influence on FBXO45 expression. One heterozygous, novel, and rare missense mutation (R108C) was identified in a single schizophrenia patient and in his healthy mother. At age 20, this patient was diagnosed with paranoid schizophrenia and carried some clinical features of 3q29 deletion phenotypes, including premorbid IQ decline. With follow-up genotyping, this mutation was not found in either the schizophrenia group (0/601) or the healthy control group (0/916). Bioinformatics analyses predicted that R108C probably pathologically impacted the structure and function of the FBXO45 protein. The relative expression of FBXO45 in SCZ case with R108C mutation was relatively low when compared to 50 schizophrenia patients and 52 healthy controls. The R108C mutation in FBXO45 is a rare variant with a modest effect on schizophrenia risk that may disrupt the structure and function of the FBXO45 protein. Our findings also suggest that FBXO45 may be a new attractive candidate gene for schizophrenia.
PLOS ONE | 2016
Kanako Ishizuka; Hiroki Kimura; Chenyao Wang; Jingrui Xing; Itaru Kushima; Yuko Arioka; Tomoko Oya-Ito; Yota Uno; Takashi Okada; Daisuke Mori; Branko Aleksic; Norio Ozaki
Both schizophrenia (SCZ) and autism spectrum disorders (ASD) are neuropsychiatric disorders with overlapping genetic etiology. Protocadherin 15 (PCDH15), which encodes a member of the cadherin super family that contributes to neural development and function, has been cited as a risk gene for neuropsychiatric disorders. Recently, rare variants of large effect have been paid attention to understand the etiopathology of these complex disorders. Thus, we evaluated the impacts of rare, single-nucleotide variants (SNVs) in PCDH15 on SCZ or ASD. First, we conducted coding exon-targeted resequencing of PCDH15 with next-generation sequencing technology in 562 Japanese patients (370 SCZ and 192 ASD) and detected 16 heterozygous SNVs. We then performed association analyses on 2,096 cases (1,714 SCZ and 382 ASD) and 1,917 controls with six novel variants of these 16 SNVs. Of these six variants, four (p.R219K, p.T281A, p.D642N, c.3010-1G>C) were ultra-rare variants (minor allele frequency < 0.0005) that may increase disease susceptibility. Finally, no statistically significant association between any of these rare, heterozygous PCDH15 point variants and SCZ or ASD was found. Our results suggest that a larger sample size of resequencing subjects is necessary to detect associations between rare PCDH15 variants and neuropsychiatric disorders.
Scientific Reports | 2016
Yuto Takasaki; Takayoshi Koide; Chenyao Wang; Hiroki Kimura; Jingrui Xing; Itaru Kushima; Kanako Ishizuka; Daisuke Mori; Mariko Sekiguchi; Masashi Ikeda; Miki Aizawa; Naoko Tsurumaru; Yoshimi Iwayama; Akira Yoshimi; Yuko Arioka; Mami Yoshida; Hiromi Noma; Tomoko Oya-Ito; Yukako Nakamura; Shohko Kunimoto; Branko Aleksic; Yota Uno; Takashi Okada; Hiroshi Ujike; Jun Egawa; Hitoshi Kuwabara; Toshiyuki Someya; Takeo Yoshikawa; Nakao Iwata; Norio Ozaki
N-methyl-d-aspartate receptors (NMDARs) play a critical role in excitatory synaptic transmission and plasticity in the central nervous systems. Recent genetics studies in schizophrenia (SCZ) show that SCZ is susceptible to NMDARs and the NMDAR signaling complex. In autism spectrum disorder (ASD), several studies report dysregulation of NMDARs as a risk factor for ASD. To further examine the association between NMDARs and SCZ/ASD development, we conducted a mutation screening study of GRIN2B which encodes NR2B subunit of NMDARs, to identify rare mutations that potentially cause diseases, in SCZ and ASD patients (n = 574 and 152, respectively). This was followed by an association study in a large sample set of SCZ, ASD, and normal healthy controls (n = 4145, 381, and 4432, respectively). We identified five rare missense mutations through the mutation screening of GRIN2B. Although no statistically significant association between any single mutation and SCZ or ASD was found, one of its variant, K1292R, is found only in the patient group. To further examine the association between mutations in GRIN2B and SCZ/ASD development, a larger sample size and functional experiments are needed.
Scientific Reports | 2015
Hiroki Kimura; Satoshi Tanaka; Itaru Kushima; Takayoshi Koide; Masahiro Banno; Tsutomu Kikuchi; Yukako Nakamura; Tomoko Shiino; Akira Yoshimi; Tomoko Oya-Ito; Jingrui Xing; Chenyao Wang; Yuto Takasaki; Branko Aleksic; Takashi Okada; Masashi Ikeda; Toshiya Inada; Tetsuya Iidaka; Nakao Iwata; Norio Ozaki
B-cell CLL/lymphoma 9 (BCL9) is located within the schizophrenia (SCZ) suspected locus chr1q21.1. A recent study reported that a single nucleotide polyphormism (SNP) within BCL9 (rs583583) is associated with negative symptoms of Schizophrenia, as measured by the Positive and Negative Syndrome Scale (PANSS), in the Caucasian population. We therefore investigated genetic association of rs583583, and its effect on negative symptoms in the Japanese patients. For association analysis, we used a Japanese sample set comprising 1089 SCZ and 950 controls (CON). Analysis of the effect of rs586586 on negative symptoms as examined by PANSS was investigated using 280 SCZ. Furthermore, for analysis of cognitive performance, we investigated 90 SCZ and 51 CON using the Continuous Performance Test (CPT-IP) and the Wisconsin Card Sorting Test (WCST) Keio version. We did not detect association between rs583583 and SCZ. Furthermore, rs583583 was not associated with PANSS negative scores or with CPT-IT or WCST cognitive tests. Considering the results of our previous study, combined with the results of the current study of rs583583, we argue that BCL9 most likely does not harbor a common genetic variant that can increase the risk for SCZ in the Japanese population.
PLOS ONE | 2014
Jingrui Xing; Chenyao Wang; Hiroki Kimura; Yuto Takasaki; Shohko Kunimoto; Akira Yoshimi; Yukako Nakamura; Takayoshi Koide; Masahiro Banno; Itaru Kushima; Yota Uno; Takashi Okada; Branko Aleksic; Masashi Ikeda; Nakao Iwata; Norio Ozaki
Background The PTPRA gene, which encodes the protein RPTP-α, is critical to neurodevelopment. Previous linkage studies, genome-wide association studies, controlled expression analyses and animal models support an association with both schizophrenia and autism spectrum disorders, both of which share a substantial portion of genetic risks. Methods We sequenced the protein-encoding areas of the PTPRA gene for single nucleotide polymorphisms or small insertions/deletions (InDel) in 382 schizophrenia patients. To validate their association with the disorders, rare (minor allele frequency <1%), missense mutations as well as one InDel in the 3′UTR region were then genotyped in another independent sample set comprising 944 schizophrenia patients, 336 autism spectrum disorders patients, and 912 healthy controls. Results Eight rare mutations, including 3 novel variants, were identified during the mutation-screening phase. In the following association analysis, L59P, one of the two missense mutations, was only observed among patients of schizophrenia. Additionally, a novel duplication in the 3′UTR region, 174620_174623dupTGAT, was predicted to be located within a Musashi Binding Element. Major Conclusions No evidence was seen for the association of rare, missense mutations in the PTPRA gene with schizophrenia or autism spectrum disorders; however, we did find some rare variants with possibly damaging effects that may increase the susceptibility of carriers to the disorders.
PLOS ONE | 2015
Emiko Inoue; Yuichiro Watanabe; Jingrui Xing; Itaru Kushima; Jun Egawa; Shujiro Okuda; Satoshi Hoya; Takashi Okada; Yota Uno; Kanako Ishizuka; Atsunori Sugimoto; Hirofumi Igeta; Ayako Nunokawa; Toshiro Sugiyama; Norio Ozaki; Toshiyuki Someya
Rare variations contribute substantially to autism spectrum disorder (ASD) liability. We recently performed whole-exome sequencing in two families with affected siblings and then carried out a follow-up study and identified ceroid-lipofuscinosis neuronal 8 (epilepsy, progressive with mental retardation) (CLN8) as a potential genetic risk factor for ASD. To further investigate the role of CLN8 in the genetic etiology of ASD, we performed resequencing and association analysis of CLN8 with ASD in a Japanese population. Resequencing the CLN8 coding region in 256 ASD patients identified five rare missense variations: g.1719291G>A (R24H), rs201670636 (F39L), rs116605307 (R97H), rs143701028 (T108M) and rs138581191 (N152S). These variations were genotyped in 568 patients (including the resequenced 256 patients) and 1017 controls. However, no significant association between these variations and ASD was identified. This study does not support a contribution of rare missense CLN8 variations to ASD susceptibility in the Japanese population.
Schizophrenia Research | 2016
Hiroki Kimura; Chenyao Wang; Kanako Ishizuka; Jingrui Xing; Yuto Takasaki; Itaru Kushima; Branko Aleksic; Yota Uno; Takashi Okada; Masashi Ikeda; Daisuke Mori; Toshiya Inada; Nakao Iwata; Norio Ozaki