Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jinhai Mao is active.

Publication


Featured researches published by Jinhai Mao.


Journal of the American Chemical Society | 2009

Tunability of Supramolecular Kagome Lattices of Magnetic Phthalocyanines Using Graphene-Based Moire Patterns as Templates

Jinhai Mao; Haigang Zhang; Yuhang Jiang; Yi Pan; Min Gao; Wende Xiao; Hong-Jun Gao

Self-assembly of various phthalocyanine (Pc) molecules and a derivative on an epitaxial graphene monolayer (MG) has been investigated by means of in situ ultrahigh vacuum scanning tunneling microscopy. The formation of regular Kagome lattices that duplicate the lattice of the moire pattern of MG was observed, demonstrating that MG can act as a wonderful template for the fabrication of unique nanoarchitectures with remarkable properties. Varying the central metal ion of the Pc molecule affords Kagome lattices with tunable molecular spins, providing ideal two-dimensional model systems for studying frustration physics.


Nano Letters | 2014

Bandgap, mid-gap states, and gating effects in MoS2.

Chih-Pin Lu; Guohong Li; Jinhai Mao; L. M. Wang; Eva Y. Andrei

The discovery of graphene has put the spotlight on other layered materials including transition metal dichalcogenites (TMD) as building blocks for novel heterostructures assembled from stacked atomic layers. Molybdenum disulfide, MoS2, a semiconductor in the TMD family, with its remarkable thermal and chemical stability and high mobility, has emerged as a promising candidate for postsilicon applications such as switching, photonics, and flexible electronics. Because these rely on controlling the position of the Fermi energy (EF), it is crucial to understand its dependence on doping and gating. To elucidate these questions we carried out gated scanning tunneling microscopy (STM) and spectroscopy (STS) measurements and compared them with transport measurements in a field effect transistor (FET) device configuration. This made it possible to measure the bandgap and the position of EF in MoS2 and to track its evolution with gate voltage. For bulk samples, the measured bandgap (∼ 1.3 eV) is comparable to the value obtained by photoluminescence, and the position of EF (∼ 0.35 eV) below the conduction band, is consistent with N-doping reported in this material. We show that the N-doping in bulk samples can be attributed to S vacancies. In contrast, the significantly higher N-doping observed in thin MoS2 films deposited on SiO2 is dominated by charge traps at the sample-substrate interface.The discovery of graphene has put the spotlight on other layered materials including transition metal dichalcogenites (TMD) as building blocks for novel heterostructures assembled from stacked atomic layers. Molybdenum disulfide, MoS2, a semiconductor in the TMD family, with its remarkable thermal and chemical stability and high mobility, has emerged as a promising candidate for post-silicon applications such as switching, photonics, and flexible electronics. Since these rely on controlling the position of the Fermi energy (EF), it is crucial to understand its dependence on doping and gating. Here we employed scanning tunneling microscopy (STM) and spectroscopy (STS) with gating capabilities to measure the bandgap and the position of EF in MoS2, and to track its evolution with gate voltage. For bulk samples, the measured bandgap (~1.3eV) is comparable to the value obtained by photoluminescence, and the position of EF (~0.35eV) below the conduction band, is consistent with n-doping reported in this material. Using topography together with spectroscopy we traced the source of the n-doping in bulk MoS2 samples to point defects, which we attribute to S vacancies. In contrast, for thin films deposited on SiO2, we found significantly higher levels of n-doping that cannot be attributed to S vacancies. By combining gated STS with transport measurements in a field effect transistor (FET) configuration, we demonstrate that the higher levels of n-doping in thin film samples is due to charge traps at the sample-substrate interface.


Applied Physics Letters | 2012

Silicon layer intercalation of centimeter-scale, epitaxially grown monolayer graphene on Ru(0001)

Jinhai Mao; Li Huang; Yi Pan; Min Gao; Junfeng He; Haitao Zhou; Haiming Guo; Yuan Tian; Qiang Zou; Lizhi Zhang; Haigang Zhang; Yeliang Wang; Shixuan Du; Xingjiang Zhou; A. H. Castro Neto; Hong-Jun Gao

We develop a strategy for graphene growth on Ru(0001) followed by silicon-layer intercalation that not only weakens the interaction of graphene with the metal substrate but also retains its superlative properties. This G/Si/Ru architecture, produced by silicon-layer intercalation approach (SIA), was characterized by scanning tunneling microscopy/spectroscopy and angle resolved electron photoemission spectroscopy. These experiments show high structural and electronic qualities of this new composite. The SIA allows for an atomic control of the distance between the graphene and the metal substrate that can be used as a top gate. Our results show potential for the next generation of graphene-based materials with tailored properties.


Applied Physics Letters | 1999

Growth of straight nanotubes with a cobalt-nickel catalyst by chemical vapor deposition

Long Sun; Jinhai Mao; Z. Pan; B. H. Chang; W. Y. Zhou; Guonian Wang; L. X. Qian; S. Xie

In this letter, we report the catalytic synthesis of a large amount of straight carbon nanotubes using a transition-metal cobalt–nickel/zeolite catalyst. High-resolution transmission electron microscopy images show that they are well graphitized. Raman spectrum shows its peak at 1349 cm−1 (D band) is much weaker than that at 1582 cm−1 (G band). We believe that straight carbon nanotubes contain much less defects than curved nanotubes and might have potential applications in the future.


Applied Physics Letters | 1998

Growth of carbon nanotubes on cobalt disilicide precipitates by chemical vapor deposition

Jinhai Mao; Long Sun; L. X. Qian; Z. Pan; B. H. Chang; W. Y. Zhou; Guonian Wang; S. Xie

We have successfully grown carbon nanotubes on cobalt-implanted silicon with various doses. The morphology of such tubes has been examined by scanning electron microscopy, transmission electron microscopy, and Raman scattering. On contrary to the commonly used transition-metal nanoparticle catalysts, nanometer-sized CoSi2 precipitates produced in the as-implanted substrates are believed to act as nucleation centers for the formation of carbon nanotubes.


Nature Physics | 2016

Realization of a tunable artificial atom at a supercritically charged vacancy in graphene

Jinhai Mao; Yuhang Jiang; Dean Moldovan; Guohong Li; Kenji Watanabe; Takashi Taniguchi; Massoud Ramezani Masir; François M. Peeters; Eva Y. Andrei

Single carbon vacancies in graphene can host a positive charge that is tunable. When this charge is large enough such vacancies resemble artificial atoms, with an induced sequence of quasi-bound states that trap nearby electrons.


Nano Research | 2013

Template-directed assembly of pentacene molecules on epitaxial graphene on Ru(0001)

Haitao Zhou; Lizhi Zhang; Jinhai Mao; Geng Li; Yi Zhang; Yeliang Wang; Shixuan Du; Werner A. Hofer; Hong-Jun Gao

The template-directed assembly of planar pentacene molecules on epitaxial graphene grown on Ru(0001) (G/Ru) has been investigated by means of low-temperature scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. STM experiments find that pentacene adopts a highly selective and dispersed growth mode in the initial stage. By using DFT calculations including van der Waals interactions, we find that the configuration with pentacene adsorbed on face-centered cubic (fcc) regions of G/Ru is the most stable one, which accounts for the selective adsorption at low coverage. Moreover, at high coverage, we have successfully controlled the molecular assembly from amorphous, local ordering, to long-range order by optimizing the deposition rate and substrate temperature.Graphical abstract


Nano Letters | 2017

Visualizing Strain-Induced Pseudomagnetic Fields in Graphene through an hBN Magnifying Glass

Yuhang Jiang; Jinhai Mao; Junxi Duan; Xinyuan Lai; Kenji Watanabe; Takashi Taniguchi; Eva Y. Andrei

Graphenes remarkable properties are inherent to its two-dimensional honeycomb lattice structure. Its low dimensionality, which makes it possible to rearrange the atoms by applying an external force, offers the intriguing prospect of mechanically controlling the electronic properties. In the presence of strain, graphene develops a pseudomagnetic field (PMF) that reconstructs the band structure into pseudo Landau levels (PLLs). However, a feasible route to realizing, characterizing and controlling PMFs is still lacking. Here we report on a method to generate and characterize PMFs in a graphene membrane supported on nanopillars. A direct measure of the local strain is achieved by using the magnifying effect of the moiré pattern formed against a hexagonal boron nitride substrate under scanning tunneling microscopy. We quantify the strain-induced PMF through the PLLs spectra observed in scanning tunneling spectroscopy. This work provides a pathway to strain induced engineering and electro-mechanical graphene-based devices.


Nature Nanotechnology | 2017

Tuning a circular p–n junction in graphene from quantum confinement to optical guiding

Yuhang Jiang; Jinhai Mao; Dean Moldovan; Massoud Ramezani Masir; Guohong Li; Kenji Watanabe; Takashi Taniguchi; F. M. Peeters; Eva Y. Andrei

The photon-like propagation of the Dirac electrons in graphene, together with its record-high electronic mobility, can lead to applications based on ultrafast electronic response and low dissipation. However, the chiral nature of the charge carriers that is responsible for the high mobility also makes it difficult to control their motion and prevents electronic switching. Here, we show how to manipulate the charge carriers by using a circular p-n junction whose size can be continuously tuned from the nanometre to the micrometre scale. The junction size is controlled with a dual-gate device consisting of a planar back gate and a point-like top gate made by decorating a scanning tunnelling microscope tip with a gold nanowire. The nanometre-scale junction is defined by a deep potential well created by the tip-induced charge. It traps the Dirac electrons in quantum-confined states, which are the graphene equivalent of the atomic collapse states (ACSs) predicted to occur at supercritically charged nuclei. As the junction size increases, the transition to the optical regime is signalled by the emergence of whispering-gallery modes, similar to those observed at the perimeter of acoustic or optical resonators, and by the appearance of a Fabry-Pérot interference pattern for junctions close to a boundary.


Chinese Physics B | 2013

Intercalation of metals and silicon at the interface of epitaxial graphene and its substrates

Li Huang; Wenyan Xu; Yande Que; Jinhai Mao; Lei Meng; Lida Pan; Geng Li; Yeliang Wang; Shixuan Du; Yun-Qi Liu; Hong-Jun Gao

Intercalations of metals and silicon between epitaxial graphene and its substrates are reviewed. For metal intercalation, seven different metals have been successfully intercalated at the interface of graphene/Ru(0001) and form different intercalated structures. Meanwhile, graphene maintains its original high quality after the intercalation and shows features of weakened interaction with the substrate. For silicon intercalation, two systems, graphene on Ru(0001) and on Ir(111), have been investigated. In both cases, graphene preserves its high quality and regains its original superlative properties after the silicon intercalation. More importantly, we demonstrate that thicker silicon layers can be intercalated at the interface, which allows the atomic control of the distance between graphene and the metal substrates. These results show the great potential of the intercalation method as a non-damaging approach to decouple epitaxial graphene from its substrates and even form a dielectric layer for future electronic applications.

Collaboration


Dive into the Jinhai Mao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong-Jun Gao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shixuan Du

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yeliang Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haitao Zhou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Geng Li

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge