Jinsong Xuan
University of Science and Technology Beijing
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jinsong Xuan.
Current Protein & Peptide Science | 2012
Jinsong Xuan; Yingang Feng
Here we review the present state of structural and functional studies of the Sac10b protein family, a class of highly conserved 10 kDa nucleic acid-binding proteins in archaea. Based on biochemical and structural studies, these proteins were originally assigned a role in the structural organization of chromatin; Sac10b proteins of hyperthermophilic archaea, for example, showed tight, unspecific DNA binding. More recently, however, Sac10b proteins of mesophilic archaea were found to interact preferentially with specific DNA sequences thereby affecting the expression of distinct genes. Furthermore, Sac10b proteins of hyperthermophilic, thermophilic and mesophilic archaea were also shown to bind to RNA with distinct affinities and specificities but functional consequences of RNA binding of these proteins, besides perhaps RNA stabilization, have not yet been observed. To better understand the physiological meaning of the various interactions of Sac10b proteins with nucleic acids, future work should concentrate on elucidating the molecular structures of complexes of Sac10b proteins of hyperthermophilic and mesophilic archaea with DNA and RNA. In addition, existing and new X-ray and NMR structures of individual hyperthermophilic Sac10b proteins may represent very good models for introducing thermostability especially in enzymes for industrial use.
Protein Expression and Purification | 2009
Jinsong Xuan; Hongwei Yao; Yingang Feng; Jinfeng Wang
Mvo10b from the mesophilic archaeon Methanococcus voltae is a member of the Sac10b family which may play an important role in the organization and accessibility of genetic information in Archaea. Since Mvo10b is a DNA-binding protein as the other member in the Sac10b family, to obtain a recombinant Mvo10b requires an efficient and inexpensive expression and purification system for producing the protein free of nucleic acid contamination. Previously, the hyperthermophilic archaeal Ssh10b of the Sac10b family was successfully purified. However, the protocol adopted to purify Ssh10b is not appropriate for purifying the mesophilic Mvo10b. This study describes the successful expression and purification of the recombinant Mvo10b. The expression of recombinant Mvo10b was carried out in Escherichia coli, and the target protein was expressed in the soluble form. The protein was purified by polyethyleneimine (PEI) precipitation followed by nickel ion metal affinity chromatography. The purity of Mvo10b was checked to insure being free of nucleic acid contamination. The final protein yield is about 30mg/l of LB culture. The ensemble of NMR and far-UV CD data shows that the purified Mvo10b has abundant regular secondary structures and is correctly folded, which may have similar 3D structure as its hyperthermophilic counterpart [P62A]Ssh10b. The developed protocol has potential application in the production of the other thermophilic and mesophilic proteins in the Sac10b family.
Journal of Biomolecular NMR | 2013
Jinsong Xuan; Xiaxia Song; Chao Chen; Jinfeng Wang; Yingang Feng
The PilT N terminus (PIN) domains with about 130 amino acids in length comprise a very large protein family present in all three kingdoms of life (Arcus et al. 2011). In the Pfam database, the PIN-domain family (PF01850) currently contains 8,807 members from bacteria, archaea, and eukaryotes. The biological functions of PIN-domains are diverse in various species. Most PIN domains have ribonuclease activity involved in different biological process. In eukaryotes, PIN domains are involved in nonsense mediated mRNA decay (NMD), RNA interference (RNAi), ribosomal RNA processing, and RNA degradation in immune response regulation (Bleichert et al. 2006; Xu et al. 2012). In prokaryotes, the majority of PIN domain proteins are the toxic components of VapBC-type toxinantitoxin systems for stress response, while the toxic activity comes from their nuclease activity (Arcus et al. 2011; Blower et al. 2011). Recently, PIN domains were found in Chp1 of RITS (the RNA-induced initiation of transcriptional gene silencing) complex (Schalch et al. 2011) and Rrp44 in the yeast exosome (Makino et al. 2013). PIN-domains have poor sequence conservation but a conserved three-dimensional structure (Arcus et al. 2011). As is shown by the determined structures of many PINdomain proteins using X-ray crystallography, PIN-domains from various organisms have a 3-layer a/b/a sandwich structure which contains a 5-stranded parallel b-sheet with the order 32145 (Arcus et al. 2011). The revealed structural fold of PIN-domains has significant similarity with the Rossmann fold, a nucleotide-binding module existing in many dehydrogenases, kinases, and flavodoxins (Rossmann et al. 1974). Besides the conserved core structure, PINdomain proteins often contain structural decorations and variations of loop and secondary structure elements, such as different a-helix orientation, different length of b-stand, and additional a-helix or b-stand (Takeshita et al. 2007; Bunker et al. 2008). Despite the poor sequence conservation, PIN domains contain a highly conserved active site constituted by several acidic residues for metal binding and ribonuclease activity (Arcus et al. 2011). Protein SSO1118 with the full length of 111 residues from hyperthermophilic archaeon Sulfolobus solfataricus P2 was annotated as a hypothetical protein conserved in Sulfolobale (Fig. 1a). Our previous sequence analysis and NMR chemical shift assignment studies suggested that SSO1118 is a novel putative PIN domain protein (Xuan et al. 2011). Most archaeal PIN domains are from VapC gene of VapBC toxinantitoxin pair whose genes are in an operon in genome, but the gene of SSO1118 is alone in the genome of S. solfataricus P2. Blast search in PDB does not give significant hit. This indicates that SSO1118 has no significant homology with structure-known proteins. In the present study, the solution structure of SSO1118 was determined by NMR J. Xuan (&) X. Song Department of Biological Science and Engineering, School of Chemical and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China e-mail: [email protected]
Biomolecular Nmr Assignments | 2011
Jinsong Xuan; Xiaxia Song; Jinfeng Wang; Yingang Feng
PilT N-terminus (PIN) domains exist broadly in all three kingdoms of life, but the functions are not clear for most of them. Archaea species often encode multiple PIN domain-containing proteins, and the signaling and stress response roles have been proposed for these proteins. Some PIN domain proteins possess nuclease activities, which were proposed to be important in toxin-antitoxin stress response, nonsense-mediated mRNA decay, or RNA interference. SSO1118 from hyperthermophilic archaeon Sulfolobus solfataricus P2 is a putative PIN domain protein with low homology to other known PIN domain proteins. Here we report the NMR resonance assignments of SSO1118 for further structural determination and functional studies. The secondary structures predicted from the assigned chemical shifts consist with those of archaeal PIN domain proteins.
Biochemical and Biophysical Research Communications | 2014
Yingang Feng; Xiaxia Song; Jinzhong Lin; Jinsong Xuan; Qiu Cui; Jinfeng Wang
Three archaea-specific ribosomal proteins recently identified show no sequence homology with other known proteins. Here we determined the structure of L46a, the most conserved one among the three proteins, from Sulfolobus solfataricus P2 using NMR spectroscopy. The structure presents a twisted β-sheet formed by the N-terminal part and two helices at the C-terminus. The L46a structure has a positively charged surface which is conserved in the L46a protein family and is the potential rRNA-binding site. Searching homologous structures in Protein Data Bank revealed that the structure of L46a represents a novel protein fold. The backbone dynamics identified by NMR relaxation experiments reveal significant flexibility at the rRNA binding surface. The potential position of L46a on the ribosome was proposed by fitting the structure into a previous electron microscopy map of the ribosomal 50S subunit, which indicated that L46a contacts to domain I of 23S rRNA near a multifunctional ribosomal protein L7ae.
Biomolecular Nmr Assignments | 2017
Jinsong Xuan; Hongwei Yao; Yingang Feng; Jinfeng Wang
The Sac10b family proteins, also named as Alba, are small, basic, nucleic acid-binding proteins widely distributed in archaea. They possess divergent physiological functions such as binding to both DNA and RNA with a high affinity and involving in genomic DNA compaction, RNA transactions and transcriptional regulations. The structures of many Sac10b family proteins from hyperthermophilic archaea have been reported, while those from thermophilic and mesophilic archaea are largely unknown. As was pointed out, the homologous members from thermophilic and mesophilic archaea may have functions different from the hyperthermophilic members. Therefore, comparison of these homologous members can provide biophysical and structural insight into the functional diversity and thermal adaptation mechanism. The present work mainly focused on the NMR study of two Sac10b family members, Mvo10b and Mth10b, from the mesophilic and thermophilic archaea, respectively. To overcome the difficulties caused by the oligomerization and conformation heterogeneity of Mth10b, a M13T/L17Q/I20Q/P56A mutant Mth10b (Mth10bTQQA) was constructed and used together with Mvo10b for multi-dimensional NMR experiments. The resonance assignments of Mvo10b and Mth10bTQQA are reported for further structural determination which is a basis for understanding the functional diversity and their thermal adaption mechanisms.
FEBS Letters | 2016
Ya-Jun Liu; Xiaxia Song; Yifei Li; Jinsong Xuan; Qiu Cui; Jinfeng Wang; Yingang Feng
NrdH redoxin is the only hydrogen donor for ribonucleotide reductase in Mycobacterium tuberculosis. Several crystal structures of NrdH redoxins in the oxidized state from different species have been reported, but no structure of the reduced state has yet been reported. Using NMR spectroscopy, we found surprisingly that the reduced NrdH redoxin from M. tuberculosis is largely unfolded at a pH lower than the pKa of its first active site cysteine, and the structural basis of the low stability was analyzed. In addition, a single mutant of the NrdH redoxin suitable to determine the structure in the reduced state was obtained.
Biomolecular Nmr Assignments | 2016
Chen Wang; Jinsong Xuan; Qiu Cui; Yingang Feng
Toxin–antitoxin (TA) systems widely exist in bacterial plasmids, phages, and chromosomes and play important roles in growth persistence and host-pathogen interaction. Virulence associated protein BC (VapBC) family TAs are the most abundant TAs in bacteria and many pathogens contain a large number of vapBC loci in the genome which have been extensively studied. Clostridium thermocellum, a cellulolytic anaerobic gram-positive bacterium with promising applications in biofuel production, also contains a VapBC TA in the genome. Despite the structures of several VapBC family TAs have been determined, the toxin and anti-toxin components of C. thermocellum VapBC have very low sequence identity to the proteins in PDB. Therefore, the structure and functional mechanism of this TA is largely unknown. Here we reported the NMR resonance assignments of the VapC toxin from C. thermocellum as a basis for further structural and functional studies.
Journal of Back and Musculoskeletal Rehabilitation | 2017
Jinsong Xuan; Hongwei Yao; Yingang Feng; Jinfeng Wang
Journal of Back and Musculoskeletal Rehabilitation | 2017
Jinsong Xuan; Hongwei Yao; Yingang Feng; Jinfeng Wang