Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jinxiang Wang is active.

Publication


Featured researches published by Jinxiang Wang.


Planta | 2006

Interactions between ethylene, gibberellin and abscisic acid regulate emergence and growth rate of adventitious roots in deepwater rice.

Bianka Steffens; Jinxiang Wang; Margret Sauter

Growth of adventitious roots is induced in deepwater rice (Oryza sativa L.) when plants become submerged. Ethylene which accumulates in flooded plant parts is responsible for root growth induction. Gibberellin (GA) is ineffective on its own but acts in a synergistic manner together with ethylene to promote the number of penetrating roots and the growth rate of emerged roots. Studies with the GA biosynthesis inhibitor paclobutrazol revealed that root emergence was dependent on GA activity. Abscisic acid (ABA) acted as a competitive inhibitor of GA activity. Root growth rate on the other hand was dependent on GA concentration and ABA acted as a potent inhibitor possibly of GA but also of ethylene signaling. The results indicated that root emergence and elongation are distinct phases of adventitious root growth that are regulated through different networking between ethylene, GA and ABA signaling pathways. Adventitious root emergence must be coordinated with programmed death of epidermal cells which cover root primordia. Epidermal cell death is also controlled by ethylene, GA and ABA albeit with cell-type specific cross-talk. Different interactions between the same hormones may be a means to ensure proper timing of cell death and root emergence and to adjust the growth rate of emerged adventitious roots.


Plant Journal | 2009

The Arabidopsis SUMO E3 ligase AtMMS21, a homologue of NSE2/MMS21, regulates cell proliferation in the root

Lixia Huang; Songguang Yang; Shengchun Zhang; Ming Liu; Jianbin Lai; Yanli Qi; Songfeng Shi; Jinxiang Wang; Yaqin Wang; Qi Xie; Chengwei Yang

hMMS21 is a SUMO E3 ligase required for the prevention of DNA damage-induced apoptosis, and acts by facilitating DNA repair in human cells. The Arabidopsis genome contains a putative MMS21 homologue capable of interacting with the SUMO E2 conjugating enzyme AtSCE1a, as indicated by a yeast two-hybrid screen and bimolecular fluorescence complementation experiments. In vitro and in vivo data demonstrated that AtMMS21 was a SUMO E3 ligase. We identified the Arabidopsis AtMMS21 null T-DNA insertion mutant mms21-1, which had a short-root phenotype, and affected cell proliferation in the apical root meristem, as indicated by impaired expression of the cell division marker CYCB1:GUS in mms21-1 roots. The mms21-1 roots had reduced responses to exogenous cytokinins, and decreased expression of the cytokinin-induced genes ARR3, ARR4, ARR5 and ARR7, compared with the wild type. Thus, our findings suggest that the AtMMS21 gene is involved in root development via cell-cycle regulation and cytokinin signalling.


BMC Genomics | 2013

Genome-wide identification of soybean microRNAs and their targets reveals their organ-specificity and responses to phosphate starvation.

Feng Xu; Qian Liu; Luying Chen; Jiebin Kuang; Thomas Walk; Jinxiang Wang; Hong Liao

BackgroundPhosphorus (P) plays important roles in plant growth and development. MicroRNAs involved in P signaling have been identified in Arabidopsis and rice, but P-responsive microRNAs and their targets in soybean leaves and roots are poorly understood.ResultsUsing high-throughput sequencing-by-synthesis (SBS) technology, we sequenced four small RNA libraries from leaves and roots grown under phosphate (Pi)-sufficient (+Pi) and Pi-depleted (-Pi) conditions, respectively, and one RNA degradome library from Pi-depleted roots at the genome-wide level. Each library generated ∼21.45−28.63 million short sequences, resulting in ∼20.56−27.08 million clean reads. From those sequences, a total of 126 miRNAs, with 154 gene targets were computationally predicted. This included 92 new miRNA candidates with 20-23 nucleotides that were perfectly matched to the Glycine max genome 1.0, 70 of which belong to 21 miRNA families and the remaining 22 miRNA unassigned into any existing miRNA family in miRBase 18.0. Under both +Pi and -Pi conditions, 112 of 126 total miRNAs (89%) were expressed in both leaves and roots. Under +Pi conditions, 12 leaf- and 2 root-specific miRNAs were detected; while under -Pi conditions, 10 leaf- and 4 root-specific miRNAs were identified. Collectively, 25 miRNAs were induced and 11 miRNAs were repressed by Pi starvation in soybean. Then, stem-loop real-time PCR confirmed expression of four selected P-responsive miRNAs, and RLM-5’ RACE confirmed that a PHO2 and GmPT5, a kelch-domain containing protein, and a Myb transcription factor, respectively are targets of miR399, miR2111, and miR159e-3p. Finally, P-responsive cis-elements in the promoter regions of soybean miRNA genes were analyzed at the genome-wide scale.ConclusionsLeaf- and root-specific miRNAs, and P-responsive miRNAs in soybean were identified genome-wide. A total of 154 target genes of miRNAs were predicted via degradome sequencing and computational analyses. The targets of miR399, miR2111, and miR159e-3p were confirmed. Taken together, our study implies the important roles of miRNAs in P signaling and provides clues for deciphering the functions for microRNA/target modules in soybean.


Current Opinion in Plant Biology | 2014

Control of phosphate homeostasis through gene regulation in crops

Cuiyue Liang; Jinxiang Wang; Jing Zhao; Jiang Tian; Hong Liao

Phosphorus (P) is an essential yet frequently deficient element in plants. Maintenance of phosphate (Pi) homeostasis is crucial for crop production. In comparison with the model plant Arabidopsis, crops face wider ranges and larger fluctuations in P supply from the soil environment, and thus develop more complicated strategies to improve Pi acquisition and utilization efficiency. Undergirding these strategies, there are numerous genes involved in alternative metabolism pathways that are regulated by complex Pi signaling networks. In this review, we intend to summarize the recent advances in crops on control of Pi homeostasis through gene regulation from Pi acquisition and mobilization within plants, as well as activation of rhizosphere P and P uptake through symbiotic associations.


International Journal of Molecular Sciences | 2013

Disruption of AtWNK8 Enhances Tolerance of Arabidopsis to Salt and Osmotic Stresses via Modulating Proline Content and Activities of Catalase and Peroxidase

Baige Zhang; Kaidong Liu; Yan Zheng; Yingxiang Wang; Jinxiang Wang; Hong Liao

With no lysine kinases (WNKs) play important roles in plant growth and development. However, its role in salt and osmotic stress tolerance is unclear. Here, we report that AtWNK8 is mainly expressed in primary root, hypocotyl, stamen and pistil and is induced by NaCl and sorbitol treatment. Compared to the wild-type, the T-DNA knock-out wnk8 mutant was more tolerant to severe salinity and osmotic stresses, as indicated by 27% and 198% more fresh weight in the NaCl and sorbitol treatment, respectively. The wnk8 mutant also accumulated 1.43-fold more proline than the wild-type in the sorbitol treatment. Under NaCl and sorbitol stresses, catalase (CAT) activity in wnk8 mutant was 1.92- and 3.7-times of that in Col-0, respectively. Similarly, under salt and osmotic stress conditions, peroxidase (POD) activities in wnk8 mutant were 1.81- and 1.58-times of that in Col-0, respectively. Taken together, we revealed that maintaining higher CAT and POD activities might be one of the reasons that the disruption of AtWNK8 enhances the tolerance to salt stress, and accumulating more proline and higher activities of CAT and POD might result in the higher tolerance of WNK8 to osmotic stress.


Biologia Plantarum | 2014

Interactions between nitric oxide, gibberellic acid, and phosphorus regulate primary root growth in Arabidopsis

Ai-Min Wu; L. Gong; Xiaoyang Chen; Jinxiang Wang

Nitric oxide (NO), gibberellic acid (GA), and phosphorus (P) have been reported to regulate primary root (PR) growth, but interactions between them in the growth of Arabidopsis PR remain unknown. This work confirmed that low P availability significantly inhibited PR growth and that NO arrested PR growth in either high P or low P conditions. Moreover, NO counteracted the stimulatory effects of GA on PR growth under low P conditions. Finally, the dependence of low P and NO inhibition of PR growth on the DELLA-SLY pathway revealed that NO stabilized a major DELLA protein. We therefore conclude that antagonistic interactions between NO and GA regulate PR growth under both the high and low P conditions, and a DELLA-SLY module is the node where NO, GA, and P pathways converge and interact.


International Journal of Molecular Sciences | 2016

Functional Characterization of Soybean Glyma04g39610 as a Brassinosteroid Receptor Gene and Evolutionary Analysis of Soybean Brassinosteroid Receptors

Suna Peng; Ping Tao; Feng Xu; Aiping Wu; Weige Huo; Jinxiang Wang

Brassinosteroids (BR) play important roles in plant growth and development. Although BR receptors have been intensively studied in Arabidopsis, the BR receptors in soybean remain largely unknown. Here, in addition to the known receptor gene Glyma06g15270 (GmBRI1a), we identified five putative BR receptor genes in the soybean genome: GmBRI1b, GmBRL1a, GmBRL1b, GmBRL2a, and GmBRL2b. Analysis of their expression patterns by quantitative real-time PCR showed that they are ubiquitously expressed in primary roots, lateral roots, stems, leaves, and hypocotyls. We used rapid amplification of cDNA ends (RACE) to clone GmBRI1b (Glyma04g39160), and found that the predicted amino acid sequence of GmBRI1b showed high similarity to those of AtBRI1 and pea PsBRI1. Structural modeling of the ectodomain also demonstrated similarities between the BR receptors of soybean and Arabidopsis. GFP-fusion experiments verified that GmBRI1b localizes to the cell membrane. We also explored GmBRI1b function in Arabidopsis through complementation experiments. Ectopic over-expression of GmBRI1b in Arabidopsis BR receptor loss-of-function mutant (bri1-5 bak1-1D) restored hypocotyl growth in etiolated seedlings; increased the growth of stems, leaves, and siliques in light; and rescued the developmental defects in leaves of the bri1-6 mutant, and complemented the responses of BR biosynthesis-related genes in the bri1-5 bak1-D mutant grown in light. Bioinformatics analysis demonstrated that the six BR receptor genes in soybean resulted from three gene duplication events during evolution. Phylogenetic analysis classified the BR receptors in dicots and monocots into three subclades. Estimation of the synonymous (Ks) and the nonsynonymous substitution rate (Ka) and selection pressure (Ka/Ks) revealed that the Ka/Ks of BR receptor genes from dicots and monocots were less than 1.0, indicating that BR receptor genes in plants experienced purifying selection during evolution.


PLOS ONE | 2015

Large-scale evaluation of maize germplasm for low-phosphorus tolerance.

Hongwei Zhang; Ruineng Xu; Chuanxiao Xie; Changling Huang; Hong Liao; Yunbi Xu; Jinxiang Wang; Wen-Xue Li

Low-phosphorus (LP) stress is a global problem for maize production and has been exacerbated by breeding activities that have reduced the genetic diversity of maize. Although LP tolerance in maize has been previously evaluated, the evaluations were generally performed with only a small number of accessions or with samples collected from a limited area. In this research, 826 maize accessions (including 580 tropical/subtropical accessions and 246 temperate accessions) were evaluated for LP tolerance under field conditions in 2011 and 2012. Plant height (PH) and leaf number were measured at three growth stages. The normalized difference vegetation index (NDVI) and fresh ear weight (FEW) were also measured. Genetic correlation analysis revealed that FEW and NDVI were strongly correlated with PH, especially at later stages. LP-tolerant and -sensitive accessions were selected based on the relative trait values of all traits using principal component analysis, and all the 14 traits of the tolerant maize accessions showed less reduction than the sensitive accessions under LP conditions. LP tolerance was strongly correlated with agronomic performance under LP stress conditions, and both criteria could be used for genetic analysis and breeding of LP tolerance. Temperate accessions showed slightly better LP tolerance than tropical/subtropical ones, although more tolerant accessions were identified from tropical/subtropical accessions, which could be contributed by their larger sample size. This large-scale evaluation provides useful information, LP-tolerant germplasm resources and evaluation protocol for genetic analysis and developing maize varieties for LP tolerance.


Biologia Plantarum | 2013

The involvement of auxin in root architecture plasticity in Arabidopsis induced by heterogeneous phosphorus availability

Q. Liu; G. Q. Zhou; Feng Xu; X. L. Yan; Hong Liao; Jinxiang Wang

Homogeneous low phosphorus availability was reported to regulate root architecture in Arabidopsis via auxin, but the roles of auxin in root architecture plasticity to heterogeneous P availability remain unclear. In this study, we employed auxin biosynthesis-, transport- and signalling-related mutants. Firstly, we found that in contrast to low P (LP) content in the whole medium, primary root (PR) growth of Arabidopsis was partially rescued in the medium divided into two parts: upper with LP and lower with high P (HP) content or in the reverse arrangement. The down part LP was more effective to arrest PR growth as well as to decrease density of lateral roots (DLR) than the upper LP, and effects were dependent on polar auxin transport. Secondly, we verified that auxin receptor TIR1 was involved in the responses of PR growth and lateral root (LR) development to P supply and loss of function of TIR1 inhibited LR development. Thirdly, effects of heterogeneous P on LRD in the upper part of PR was dependent on PIN2 and PIN4, and in the down part on PIN3 and PIN4, whereas density of total LRs was dependent on auxin transporters PIN2 and PIN7. Finally, heterogeneous P availability altered the accumulation of auxin in PR tip and the expression of auxin biosynthesisrelated genes TAA1, YUC1, YUC2, and YUC4. Taken together, we provided evidences for the involvement of auxin in root architecture plasticity in response to heterogeneous phosphorus availability in Arabidopsis.


Annals of Botany | 2012

Identification and expression analysis of the Glycine max CYP707A gene family in response to drought and salt stresses

Yan Zheng; Yingyi Huang; Weihao Xian; Jinxiang Wang; Hong Liao

Collaboration


Dive into the Jinxiang Wang's collaboration.

Top Co-Authors

Avatar

Hong Liao

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Feng Xu

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Ruineng Xu

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yunbi Xu

International Maize and Wheat Improvement Center

View shared research outputs
Top Co-Authors

Avatar

Ai-Min Wu

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Chengwei Yang

South China Normal University

View shared research outputs
Top Co-Authors

Avatar

Cuiyue Liang

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

G. Q. Zhou

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jianbin Lai

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jiang Tian

South China Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge