Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jinxiong Wu is active.

Publication


Featured researches published by Jinxiong Wu.


Nano Letters | 2015

Roll-to-Roll Encapsulation of Metal Nanowires between Graphene and Plastic Substrate for High-Performance Flexible Transparent Electrodes

Bing Deng; Po-Chun Hsu; Guanchu Chen; Bananakere Nanjegowda Chandrashekar; Lei Liao; Zhawulie Ayitimuda; Jinxiong Wu; Yunfan Guo; Li Lin; Yu Zhou; Mahaya Aisijiang; Qin Xie; Yi Cui; Zhongfan Liu; Hailin Peng

Transparent conductive film on plastic substrate is a critical component in low-cost, flexible, and lightweight optoelectronics. Industrial-scale manufacturing of high-performance transparent conductive flexible plastic is needed to enable wide-ranging applications. Here, we demonstrate a continuous roll-to-roll (R2R) production of transparent conductive flexible plastic based on a metal nanowire network fully encapsulated between graphene monolayer and plastic substrate. Large-area graphene film grown on Cu foil via a R2R chemical vapor deposition process was hot-laminated onto nanowires precoated EVA/PET film, followed by a R2R electrochemical delamination that preserves the Cu foil for reuse. The encapsulated structure minimized the resistance of both wire-to-wire junctions and graphene grain boundaries and strengthened adhesion of nanowires and graphene to plastic substrate, resulting in superior optoelectronic properties (sheet resistance of ∼8 Ω sq(-1) at 94% transmittance), remarkable corrosion resistance, and excellent mechanical flexibility. With these advantages, long-cycle life flexible electrochromic devices are demonstrated, showing up to 10000 cycles.


Nature Communications | 2015

Patterning two-dimensional chalcogenide crystals of Bi2Se3 and In2Se3 and efficient photodetectors.

Wenshan Zheng; Tian Xie; Yu Zhou; Yulin Chen; Wei Jiang; Shuli Zhao; Jinxiong Wu; Yumei Jing; Yue Wu; Guanchu Chen; Yunfan Guo; Jianbo Yin; Shaoyun Huang; Hongqi Xu; Zhongfan Liu; Hailin Peng

Patterning of high-quality two-dimensional chalcogenide crystals with unique planar structures and various fascinating electronic properties offers great potential for batch fabrication and integration of electronic and optoelectronic devices. However, it remains a challenge that requires accurate control of the crystallization, thickness, position, orientation and layout. Here we develop a method that combines microintaglio printing with van der Waals epitaxy to efficiently pattern various single-crystal two-dimensional chalcogenides onto transparent insulating mica substrates. Using this approach, we have patterned large-area arrays of two-dimensional single-crystal Bi2Se3 topological insulator with a record high Hall mobility of ∼1,750 cm2 V−1 s−1 at room temperature. Furthermore, our patterned two-dimensional In2Se3 crystal arrays have been integrated and packaged to flexible photodetectors, yielding an ultrahigh external photoresponsivity of ∼1,650 A W−1 at 633 nm. The facile patterning, integration and packaging of high-quality two-dimensional chalcogenide crystals hold promise for innovations of next-generation photodetector arrays, wearable electronics and integrated optoelectronic circuits.


Nature Nanotechnology | 2017

High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se

Jinxiong Wu; Hongtao Yuan; Mengmeng Meng; Cheng Chen; Yan Sun; Zhuoyu Chen; Wenhui Dang; Congwei Tan; Yujing Liu; Jianbo Yin; Yubing Zhou; Shaoyun Huang; Hongqi Xu; Yi Cui; Harold Y. Hwang; Zhongfan Liu; Yulin Chen; Binghai Yan; Hailin Peng

High-mobility semiconducting ultrathin films form the basis of modern electronics, and may lead to the scalable fabrication of highly performing devices. Because the ultrathin limit cannot be reached for traditional semiconductors, identifying new two-dimensional materials with both high carrier mobility and a large electronic bandgap is a pivotal goal of fundamental research. However, air-stable ultrathin semiconducting materials with superior performances remain elusive at present. Here, we report ultrathin films of non-encapsulated layered Bi2O2Se, grown by chemical vapour deposition, which demonstrate excellent air stability and high-mobility semiconducting behaviour. We observe bandgap values of ∼0.8 eV, which are strongly dependent on the film thickness due to quantum-confinement effects. An ultrahigh Hall mobility value of >20,000 cm2 V-1 s-1 is measured in as-grown Bi2O2Se nanoflakes at low temperatures. This value is comparable to what is observed in graphene grown by chemical vapour deposition and at the LaAlO3-SrTiO3 interface, making the detection of Shubnikov-de Haas quantum oscillations possible. Top-gated field-effect transistors based on Bi2O2Se crystals down to the bilayer limit exhibit high Hall mobility values (up to 450 cm2 V-1 s-1), large current on/off ratios (>106) and near-ideal subthreshold swing values (∼65 mV dec-1) at room temperature. Our results make Bi2O2Se a promising candidate for future high-speed and low-power electronic applications.


Nano Letters | 2017

Controlled Synthesis of High-Mobility Atomically Thin Bismuth Oxyselenide Crystals

Jinxiong Wu; Congwei Tan; Zhenjun Tan; Yujing Liu; Jianbo Yin; Wenhui Dang; Mingzhan Wang; Hailin Peng

Non-neutral layered crystals, another group of two-dimensional (2D) materials that lack a well-defined van der Waals (vdWs) gap, are those that form strong chemical bonds in-plane but display weak out-of-plane electrostatic interactions, exhibiting intriguing properties for the bulk counterpart. However, investigation of the properties of their atomically thin counterpart are very rare presumably due to the absence of efficient ways to achieve large-area high-quality 2D crystals. Here, high-mobility atomically thin Bi2O2Se, a typical non-neutral layered crystal without a standard vdWs gap, was synthesized via a facial chemical vapor deposition (CVD) method, showing excellent controllability for thickness, domain size, nucleation site, and crystal-phase evolution. Atomically thin, large single crystals of Bi2O2Se with lateral size up to ∼200 μm and thickness down to a bilayer were obtained. Moreover, optical and electrical properties of the CVD-grown 2D Bi2O2Se crystals were investigated, displaying a size-tunable band gap upon thinning and an ultrahigh Hall mobility of >20000 cm2 V-1 s-1 at 2 K. Our results on the high-mobility 2D Bi2O2Se semiconductor may activate the synthesis and related fundamental research of other non-neutral 2D materials.


Advanced Materials | 2017

Chemical Patterning of High‐Mobility Semiconducting 2D Bi2O2Se Crystals for Integrated Optoelectronic Devices

Jinxiong Wu; Yujing Liu; Zhenjun Tan; Congwei Tan; Jianbo Yin; Tianran Li; Teng Tu; Hailin Peng

Patterning of high-mobility 2D semiconducting materials with unique layered structures and superb electronic properties offers great potential for batch fabrication and integration of next-generation electronic and optoelectronic devices. Here, a facile approach is used to achieve accurate patterning of 2D high-mobility semiconducting Bi2 O2 Se crystals using dilute H2 O2 and protonic mixture acid as efficient etchants. The 2D Bi2 O2 Se crystal after chemical etching maintains a high Hall mobility of over 200 cm2 V-1 s-1 at room temperature. Centimeter-scale well-ordered arrays of 2D Bi2 O2 Se with tailorable configurations are readily obtained. Furthermore, integrated photodetectors based on 2D Bi2 O2 Se arrays are fabricated, exhibiting excellent air stability and high photoresponsivity of ≈2000 A W-1 at 532 nm. These results are one step towards the practical application of ultrathin 2D integrated digital and optoelectronic circuits.


Nanoscale | 2016

Weak antilocalization and electron–electron interaction in coupled multiple-channel transport in a Bi2Se3 thin film

Yumei Jing; Shaoyun Huang; Kai Zhang; Jinxiong Wu; Yunfan Guo; Hailin Peng; Zhongfan Liu; Hongqi Xu

The electron transport properties of a topological insulator Bi2Se3 thin film are studied in Hall-bar geometry. The film with a thickness of 10 nm is grown by van der Waals epitaxy on fluorophlogopite mica and Hall-bar devices are fabricated from the as-grown film directly on the mica substrate. Weak antilocalization and electron-electron interaction effects are observed and analyzed at low temperatures. The phase-coherence length extracted from the measured weak antilocalization characteristics shows a strong power-law increase with decreasing temperature and the transport in the film is shown to occur via coupled multiple (topological surface and bulk states) channels. The conductivity of the film shows a logarithmical decrease with decreasing temperature and thus the electron-electron interaction plays a dominant role in quantum corrections to the conductivity of the film at low temperatures.


ACS Nano | 2016

Building Large-Domain Twisted Bilayer Graphene with van Hove Singularity

Zhenjun Tan; Jianbo Yin; Cheng Chen; Huan Wang; Li Lin; Luzhao Sun; Jinxiong Wu; Xiao Sun; Haifeng Yang; Yulin Chen; Hailin Peng; Zhongfan Liu

Twisted bilayer graphene (tBLG) with van Hove Singularity (VHS) has exhibited novel twist-angle-dependent chemical and physical phenomena. However, scalable production of high-quality tBLG is still in its infancy, especially lacking the angle controlled preparation methods. Here, we report a facile approach to prepare tBLG with large domain sizes (>100 μm) and controlled twist angles by a clean layer-by-layer transfer of two constituent graphene monolayers. The whole process without interfacial polymer contamination in two monolayers guarantees the interlayer interaction of the π-bond electrons, which gives rise to the existence of minigaps in electronic structures and the consequent formation of VHSs in density of state. Such perturbation on band structure was directly observed by angle-resolved photoemission spectroscopy with submicrometer spatial resolution (micro-ARPES). The VHSs lead to a strong light-matter interaction and thus introduce ∼20-fold enhanced intensity of Raman G-band, which is a characteristic of high-quality tBLG. The as-prepared tBLG with strong light-matter interaction was further fabricated into high-performance photodetectors with selectively enhanced photocurrent generation (up to ∼6 times compared with monolayer in our device).


Nanoscale | 2018

Strong spin–orbit interaction and magnetotransport in semiconductor Bi2O2Se nanoplates

Mengmeng Meng; Shaoyun Huang; Congwei Tan; Jinxiong Wu; Yumei Jing; Hailing Peng; Hongqi Xu

Semiconductor Bi2O2Se nanolayers of high crystal quality have been realized via epitaxial growth. These two-dimensional (2D) materials possess excellent electron transport properties with potential application in nanoelectronics. It is also strongly expected that the 2D Bi2O2Se nanolayers can be an excellent material platform for developing spintronic and topological quantum devices if the presence of strong spin-orbit interaction in the 2D materials can be experimentally demonstrated. Herein, we report the experimental determination of the strength of spin-orbit interactions in Bi2O2Se nanoplates through magnetotransport measurements. The nanoplates are epitaxially grown by chemical vapor deposition, and the magnetotransport measurements are performed at low temperatures. The measured magnetoconductance exhibits a crossover behavior from weak antilocalization to weak localization at low magnetic fields with increasing temperature or decreasing back gate voltage. We have analyzed this transition behavior of magnetoconductance based on an interference theory, which describes quantum correction to the magnetoconductance of a 2D system in the presence of spin-orbit interaction. Dephasing length and spin relaxation length are extracted from the magnetoconductance measurements. Compared to the case of other semiconductor nanostructures, the extracted relatively short spin relaxation length of ∼150 nm indicates the existence of a strong spin-orbit interaction in Bi2O2Se nanolayers.


Small | 2017

Epitaxial Growth of Ternary Topological Insulator Bi2Te2Se 2D Crystals on Mica

Yujing Liu; Min Tang; Mengmeng Meng; Mingzhan Wang; Jinxiong Wu; Jianbo Yin; Yubing Zhou; Yunfan Guo; Congwei Tan; Wenhui Dang; Shaoyun Huang; Hongqi Xu; Yong Wang; Hailin Peng

Nanostructures of ternary topological insulator (TI) Bi2 Te2 Se are, in principle, advantageous to the manifestation of topologically nontrivial surface states, due to significantly enhanced surface-to-volume ratio compared with its bulk crystals counterparts. Herein, the synthesis of 2D Bi2 Te2 Se crystals on mica via the van der Waals epitaxy method is explored and systematically the growth behaviors during the synthesis process are investigated. Accordingly, 2D Bi2 Te2 Se crystals with domain size up to 50 µm large and thickness down to 2 nm are obtained. A pronounced weak antilocalization effect is clearly observed in the 2D Bi2 Te2 Se crystals at 2 K. The method for epitaxial growth of 2D ternary Bi2 Te2 Se crystals may inspire materials engineering toward enhanced manifestation of the subtle surface states of TIs and thereby facilitate their potential applications in next-generation spintronics.


Science Advances | 2018

Electronic structures and unusually robust bandgap in an ultrahigh-mobility layered oxide semiconductor, Bi2O2Se

Cheng Chen; M. X. Wang; Jinxiong Wu; Huixia Fu; Haifeng Yang; Zhen Tian; Teng Tu; Han Peng; Yan Sun; Xiang Xu; Juan Jiang; Niels B. M. Schröter; Yiwei Li; Ding Pei; Shuai Liu; Sandy Adhitia Ekahana; Hongtao Yuan; Jiamin Xue; Gang Li; Jin-Feng Jia; Zhongkai Liu; Binghai Yan; Hailin Peng; Yulin Chen

A new layered oxide semiconductor (Bi2O2Se) is found with excellent electronic properties for promising applications. Semiconductors are essential materials that affect our everyday life in the modern world. Two-dimensional semiconductors with high mobility and moderate bandgap are particularly attractive today because of their potential application in fast, low-power, and ultrasmall/thin electronic devices. We investigate the electronic structures of a new layered air-stable oxide semiconductor, Bi2O2Se, with ultrahigh mobility (~2.8 × 105 cm2/V⋅s at 2.0 K) and moderate bandgap (~0.8 eV). Combining angle-resolved photoemission spectroscopy and scanning tunneling microscopy, we mapped out the complete band structures of Bi2O2Se with key parameters (for example, effective mass, Fermi velocity, and bandgap). The unusual spatial uniformity of the bandgap without undesired in-gap states on the sample surface with up to ~50% defects makes Bi2O2Se an ideal semiconductor for future electronic applications. In addition, the structural compatibility between Bi2O2Se and interesting perovskite oxides (for example, cuprate high–transition temperature superconductors and commonly used substrate material SrTiO3) further makes heterostructures between Bi2O2Se and these oxides possible platforms for realizing novel physical phenomena, such as topological superconductivity, Josephson junction field-effect transistor, new superconducting optoelectronics, and novel lasers.

Collaboration


Dive into the Jinxiong Wu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge