Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jinye Mu is active.

Publication


Featured researches published by Jinye Mu.


Plant Physiology | 2008

LEAFY COTYLEDON1 Is a Key Regulator of Fatty Acid Biosynthesis in Arabidopsis

Jinye Mu; Helin Tan; Qi Zheng; Fuyou Fu; Yan Liang; Jian Zhang; Xiaohui Yang; Tai Wang; Kang Chong; Xiu-Jie Wang; Jianru Zuo

In plants, fatty acids are de novo synthesized predominantly in plastids from acetyl-coenzyme A. Although fatty acid biosynthesis has been biochemically well studied, little is known about the regulatory mechanisms of the pathway. Here, we show that overexpression of the Arabidopsis (Arabidopsis thaliana) LEAFY COTYLEDON1 (LEC1) gene causes globally increased expression of fatty acid biosynthetic genes, which are involved in key reactions of condensation, chain elongation, and desaturation of fatty acid biosynthesis. In the plastidial fatty acid synthetic pathway, over 58% of known enzyme-coding genes are up-regulated in LEC1-overexpressing transgenic plants, including those encoding three subunits of acetyl-coenzyme A carboxylase, a key enzyme controlling the fatty acid biosynthesis flux. Moreover, genes involved in glycolysis and lipid accumulation are also up-regulated. Consistent with these results, levels of major fatty acid species and lipids were substantially increased in the transgenic plants. Genetic analysis indicates that the LEC1 function is partially dependent on ABSCISIC ACID INSENSITIVE3, FUSCA3, and WRINKLED1 in the regulation of fatty acid biosynthesis. Moreover, a similar phenotype was observed in transgenic Arabidopsis plants overexpressing two LEC1-like genes of Brassica napus. These results suggest that LEC1 and LEC1-like genes act as key regulators to coordinate the expression of fatty acid biosynthetic genes, thereby representing promising targets for genetic improvement of oil production plants.


Cell Research | 2007

Involvement of sphingoid bases in mediating reactive oxygen intermediate production and programmed cell death in Arabidopsis.

Lihua Shi; Jacek Bielawski; Jinye Mu; Haili Dong; Chong Teng; Jian Zhang; Xiaohui Yang; Nario Tomishige; Kentaro Hanada; Yusuf A. Hannun; Jianru Zuo

Sphingolipids have been suggested to act as second messengers for an array of cellular signaling activities in plant cells, including stress responses and programmed cell death (PCD). However, the mechanisms underpinning these processes are not well understood. Here, we report that an Arabidopsis mutant, fumonisin B1 resistant11-1 (fbr11-1), which fails to generate reactive oxygen intermediates (ROIs), is incapable of initiating PCD when the mutant is challenged by fumonisin B1 (FB1), a specific inhibitor of ceramide synthase. Molecular analysis indicated that FBR11 encodes a long-chain base1 (LCB1) subunit of serine palmitoyltransferase (SPT), which catalyzes the first rate-limiting step of de novo sphingolipid synthesis. Mass spectrometric analysis of the sphingolipid concentrations revealed that whereas the fbr11-1 mutation did not affect basal levels of sphingoid bases, the mutant showed attenuated formation of sphingoid bases in response to FB1. By a direct feeding experiment, we show that the free sphingoid bases dihydrosphingosine, phytosphingosine and sphingosine efficiently induce ROI generation followed by cell death. Conversely, ROI generation and cell death induced by dihydrosphingosine were specifically blocked by its phosphorylated form dihydrosphingosine-1-phosphate in a dose-dependent manner, suggesting that the maintenance of homeostasis between a free sphingoid base and its phosphorylated derivative is critical to determining the cell fate. Because alterations of the sphingolipid level occur prior to the ROI production, we propose that the free sphingoid bases are involved in the control of PCD in Arabidopsis, presumably through the regulation of the ROI level upon receiving different developmental or environmental cues.


Plant Physiology | 2011

Enhanced Seed Oil Production in Canola by Conditional Expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in Developing Seeds

Helin Tan; Xiaohui Yang; Fengxia Zhang; Xiu Zheng; Cunmin Qu; Jinye Mu; Fuyou Fu; Jiana Li; Rongzhan Guan; Hongsheng Zhang; Guodong Wang; Jianru Zuo

The seed oil content in oilseed crops is a major selection trait to breeders. In Arabidopsis (Arabidopsis thaliana), LEAFY COTYLEDON1 (LEC1) and LEC1-LIKE (L1L) are key regulators of fatty acid biosynthesis. Overexpression of AtLEC1 and its orthologs in canola (Brassica napus), BnLEC1 and BnL1L, causes an increased fatty acid level in transgenic Arabidopsis plants, which, however, also show severe developmental abnormalities. Here, we use truncated napin A promoters, which retain the seed-specific expression pattern but with a reduced expression level, to drive the expression of BnLEC1 and BnL1L in transgenic canola. Conditional expression of BnLEC1 and BnL1L increases the seed oil content by 2% to 20% and has no detrimental effects on major agronomic traits. In the transgenic canola, expression of a subset of genes involved in fatty acid biosynthesis and glycolysis is up-regulated in developing seeds. Moreover, the BnLEC1 transgene enhances the expression of several genes involved in Suc synthesis and transport in developing seeds and the silique wall. Consistently, the accumulation of Suc and Fru is increased in developing seeds of the transgenic rapeseed, suggesting the increased carbon flux to fatty acid biosynthesis. These results demonstrate that BnLEC1 and BnL1L are reliable targets for genetic improvement of rapeseed in seed oil production.


The Plant Cell | 2010

Arabidopsis Histidine Kinase CKI1 Acts Upstream of HISTIDINE PHOSPHOTRANSFER PROTEINS to Regulate Female Gametophyte Development and Vegetative Growth

Yan Deng; Haili Dong; Jinye Mu; Bo Ren; Binglian Zheng; Zhendong Ji; Wei-Cai Yang; Yan Liang; Jianru Zuo

The Arabidopsis histidine kinase CKI1 is essential for female gametogenesis and is able to activate cytokinin signaling by unknown mechanisms. This study shows that CKI1 acts upstream of HISTIDINE PHOSPHOTRANSFER PROTEINS to regulate downstream signaling events in a cytokinin receptor-independent manner and demonstrates that CKI1-AHP signaling is essential for plant growth and development. Cytokinin signaling is mediated by a multiple-step phosphorelay. Key components of the phosphorelay consist of the histidine kinase (HK)-type receptors, histidine phosphotransfer proteins (HP), and response regulators (RRs). Whereas overexpression of a nonreceptor-type HK gene CYTOKININ-INDEPENDENT1 (CKI1) activates cytokinin signaling by an unknown mechanism, mutations in CKI1 cause female gametophytic lethality. However, the function of CKI1 in cytokinin signaling remains unclear. Here, we characterize a mutant allele, cki1-8, that can be transmitted through female gametophytes with low frequency (∼0.17%). We have recovered viable homozygous cki1-8 mutant plants that grow larger than wild-type plants, show defective megagametogenesis and rarely set enlarged seeds. We found that CKI1 acts upstream of AHP (Arabidopsis HP) genes, independently of cytokinin receptor genes. Consistently, an ahp1,2-2,3,4,5 quintuple mutant, which contains an ahp2-2 null mutant allele, exhibits severe defects in megagametogenesis, with a transmission efficiency of <3.45% through female gametophytes. Rarely recovered ahp1,2-2,3,4,5 quintuple mutants are seedling lethal. Finally, the female gametophytic lethal phenotype of cki1-5 (a null mutant) can be partially rescued by IPT8 or ARR1 (a type-B Arabidopsis RR) driven by a CKI1 promoter. These results define a genetic pathway consisting of CKI1, AHPs, and type-B ARRs in the regulation of female gametophyte development and vegetative growth.


Plant Physiology | 2015

S-Nitrosylation Positively Regulates Ascorbate Peroxidase Activity during Plant Stress Responses

Huanjie Yang; Jinye Mu; Lichao Chen; Jian Feng; Jiliang Hu; Lei Li; Jian-Min Zhou; Jianru Zuo

Nitric oxide positively regulates a key Arabidopsis peroxidase through S-nitrosylation and enhances resistance to oxidative stresses. Nitric oxide (NO) and reactive oxygen species (ROS) are two classes of key signaling molecules involved in various developmental processes and stress responses in plants. The burst of NO and ROS triggered by various stimuli activates downstream signaling pathways to cope with abiotic and biotic stresses. Emerging evidence suggests that the interplay of NO and ROS plays a critical role in regulating stress responses. However, the underpinning molecular mechanism remains poorly understood. Here, we show that NO positively regulates the activity of the Arabidopsis (Arabidopsis thaliana) cytosolic ascorbate peroxidase1 (APX1). We found that S-nitrosylation of APX1 at cysteine (Cys)-32 enhances its enzymatic activity of scavenging hydrogen peroxide, leading to the increased resistance to oxidative stress, whereas a substitution mutation at Cys-32 causes the reduction of ascorbate peroxidase activity and abolishes its responsiveness to the NO-enhanced enzymatic activity. Moreover, S-nitrosylation of APX1 at Cys-32 also plays an important role in regulating immune responses. These findings illustrate a unique mechanism by which NO regulates hydrogen peroxide homeostasis in plants, thereby establishing a molecular link between NO and ROS signaling pathways.


Cell Research | 2009

Overexpression of PGA37/MYB118 and MYB115 promotes vegetative-to-embryonic transition in Arabidopsis

Xingchun Wang; Qi-Wen Niu; Chong Teng; Chao Li; Jinye Mu; Nam-Hai Chua; Jianru Zuo

Formation of somatic embryos from non-germline cells is unique to higher plants and can be manipulated in a variety of species. Previous studies revealed that overexpression of several Arabidopsis genes, including WUSCHEL (WUS)/PLANT GROWTH ACTIVATOR6 (PGA6), BABY BOOM, LEAFY COTYLEDON1 (LEC1), and LEC2, is able to cause vegetative-to-embryonic transition or the formation of somatic embryos. Here, we report that a gain-of-function mutation in the Arabidopsis PGA37 gene, encoding the MYB118 transcription factor, induced vegetative-to-embryonic transition, the formation of somatic embryos from root explants, and an elevated LEC1 expression level. Double mutant analysis showed that WUS was not required for induction of somatic embryos by PGA37/MYB118. In addition, overexpression of MYB115, a homolog of PGA37/MYB118, caused a pga37-like phenotype. A myb118 myb115 double mutant did not show apparent developmental abnormalities. Collectively, these results suggest that PGA37/MYB118 and MYB115 promote vegetative-to-embryonic transition, through a signaling pathway independent of WUS.


Cell Research | 2007

The Arabidopsis Spontaneous Cell Death1 gene, encoding a ζ-carotene desaturase essential for carotenoid biosynthesis, is involved in chloroplast development, photoprotection and retrograde signalling

Haili Dong; Yan Deng; Jinye Mu; Qingtao Lu; Yiqin Wang; Yunyuan Xu; Chengcai Chu; Kang Chong; Congming Lu; Jianru Zuo

Carotenoids, a class of natural pigments found in all photosynthetic organisms, are involved in a variety of physiological processes, including coloration, photoprotection, biosynthesis of abscisic acid (ABA) and chloroplast biogenesis. Although carotenoid biosynthesis has been well studied biochemically, the genetic basis of the pathway is not well understood. Here, we report the characterization of two allelic Arabidopsis mutants, spontaneous cell death1-1 (spc1-1) and spc1-2. The weak allele spc1-1 mutant showed characteristics of bleached leaves, accumulation of superoxide and mosaic cell death. The strong mutant allele spc1-2 caused a complete arrest of plant growth and development shortly after germination, leading to a seedling-lethal phenotype. Genetic and molecular analyses indicated that SPC1 encodes a putative ζ-carotene desaturase (ZDS) in the carotenoid biosynthesis pathway. Analysis of carotenoids revealed that several major carotenoid compounds downstream of SPC1/ZDS were substantially reduced in spc1-1, suggesting that SPC1 is a functional ZDS. Consistent with the downregulated expression of CAO and PORB, the chlorophyll content was decreased in spc1-1 plants. In addition, expression of Lhcb1.1, Lhcb1.4 and RbcS was absent in spc1-2, suggesting the possible involvement of carotenoids in the plastid-to-nucleus retrograde signaling. The spc1-1 mutant also displays an ABA-deficient phenotype that can be partially rescued by the externally supplied phytohormone. These results suggest that SPC1/ZDS is essential for biosynthesis of carotenoids and plays a crucial role in plant growth and development.


Plant Physiology | 2008

Serine Palmitoyltransferase, a Key Enzyme for de Novo Synthesis of Sphingolipids, Is Essential for Male Gametophyte Development in Arabidopsis

Chong Teng; Haili Dong; Lihua Shi; Yan Deng; Jinye Mu; Jian Zhang; Xiaohui Yang; Jianru Zuo

Sphingolipids are important signaling molecules involved in various cellular activities. De novo sphingolipid synthesis is initiated by a rate-limiting enzyme, serine palmitoyltransferase (SPT), a heterodimer consisting of LONG-CHAIN BASE1 (LCB1) and LCB2 subunits. A mutation in the Arabidopsis thaliana LCB1 gene, lcb1-1, was found to cause embryo lethality. However, the underpinning molecular and cellular mechanisms remain largely unclear. Here, we report the identification of the fumonisin B1 resistant11-2 (fbr11-2) mutant, an allele of lcb1-1. The fbr11-2 mutation, most likely an allele stronger than lcb1-1, was transmitted only through female gametophytes and caused the formation of abortive microspores. During the second pollen mitosis, fbr11-2 initiated apoptotic cell death in binucleated microspores characteristic of nuclear DNA fragmentation, followed by cytoplasm shrinkage and organelle degeneration at the trinucleated stage. In addition, a double mutant with T-DNA insertions in two homologous LCB2 genes showed a phenotype similar to fbr11-2. Consistent with these observations, the FBR11/LCB1 expression was confined in microspores during microgametogenesis. These results suggest that SPT-modulated programmed cell death plays an important role in the regulation of male gametophyte development.


Molecular Plant | 2013

Arabidopsis transcription factor genes NF-YA1, 5, 6, and 9 play redundant roles in male gametogenesis, embryogenesis, and seed development.

Jinye Mu; Helin Tan; Sulei Hong; Yan Liang; Jianru Zuo

Nuclear factor Y (NF-Y) is a highly conserved transcription factor presented in all eukaryotic organisms, and is a heterotrimer consisting of three subunits: NF-YA, NF-YB, and NF-YC. In Arabidopsis, these three subunits are encoded by multigene families. The best-studied member of the NF-Y transcription factors is LEAFY COTYLEDON1 (LEC1), a NF-YB family member, which plays a critical role in embryogenesis and seed maturation. However, the function of most NF-Y genes remains elusive. Here, we report the characterization of four genes in the NF-YA family. We found that a gain-of-function mutant of NF-YA1 showed defects in male gametogenesis and embryogenesis. Consistently, overexpression of NF-YA1, 5, 6, and 9 affects male gametogenesis, embryogenesis, seed morphology, and seed germination, with a stronger phenotype when overexpressing NF-YA1 and NF-YA9. Moreover, overexpression of these NF-YA genes also causes hypersensitivity to abscisic acid (ABA) during seed germination, retarded seedling growth, and late flowering at different degrees. Intriguingly, overexpression of NF-YA1, 5, 6, and 9 is sufficient to induce the formation of somatic embryos from the vegetative tissues. However, single or double mutants of these NF-YA genes do not have detectable phenotype. Collectively, these results provide evidence that NF-YA1, 5, 6, and 9 play redundant roles in male gametophyte development, embryogenesis, seed development, and post-germinative growth.


Plant Physiology | 2013

LESION SIMULATING DISEASE1 Interacts with Catalases to Regulate Hypersensitive Cell Death in Arabidopsis

Yansha Li; Lichao Chen; Jinye Mu; Jianru Zuo

A zinc finger-domain protein interacts with catalases to regulate hypersensitive cell death in Arabidopsis. LESION SIMULATING DISEASE1 (lsd1) is an important negative regulator of programmed cell death (PCD) in Arabidopsis (Arabidopsis thaliana). The loss-of-function mutations in lsd1 cause runaway cell death triggered by reactive oxygen species. lsd1 encodes a novel zinc finger protein with unknown biochemical activities. Here, we report the identification of CATALASE3 (CAT3) as an lsd1-interacting protein by affinity purification and mass spectrometry-based proteomic analysis. The Arabidopsis genome contains three homologous catalase genes (CAT1, CAT2, and CAT3). Yeast two-hybrid and coimmunoprecipitation analyses demonstrated that lsd1 interacted with all three catalases both in vitro and in vivo, and the interaction required the zinc fingers of lsd1. We found that the catalase enzymatic activity was reduced in the lsd1 mutant, indicating that the catalase enzyme activity was partially dependent on lsd1. Consistently, the lsd1 mutant was more sensitive to the catalase inhibitor 3-amino-1,2,4-triazole than the wild type, suggesting that the interaction between lsd1 and catalases is involved in the regulation of the reactive oxygen species generated in the peroxisome. Genetic studies revealed that lsd1 interacted with CATALASE genes to regulate light-dependent runaway cell death and hypersensitive-type cell death. Moreover, the accumulation of salicylic acid was required for PCD regulated by the interaction between lsd1 and catalases. These results suggest that the lsd1-catalase interaction plays an important role in regulating PCD in Arabidopsis.

Collaboration


Dive into the Jinye Mu's collaboration.

Top Co-Authors

Avatar

Jianru Zuo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Haili Dong

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jian Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yan Deng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Helin Tan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Huanjie Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lichao Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yan Liang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Binglian Zheng

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge