Jiqi Cheng
Stony Brook University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jiqi Cheng.
IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2006
Jiqi Cheng; Jian-yu Lu
Fast three-dimensional (3-D) ultrasound imaging is a technical challenge. Previously, a high-frame rate (HFR) imaging theory was developed in which a pulsed plane wave was used in transmission, and limited-diffraction array beam weightings were applied to received echo signals to produce a spatial Fourier transform of object function for 3-D image reconstruction. In this paper, the theory is extended to include explicitly various transmission schemes such as multiple limited-diffraction array beams and steered plane waves. A relationship between the limited-diffraction array beam weighting of received echo signals and a 2-D Fourier transform of the same signals over a transducer aperture is established. To verify the extended theory, computer simulations, in vitro experiments on phantoms, and in vivo experiments on the human kidney and heart were performed. Results show that image resolution and contrast are increased over a large field of view as more and more limited-diffraction array beams with different parameters or plane waves steered at different angles are used in transmissions. Thus, the method provides a continuous compromise between image quality and image frame rate that is inversely proportional to the number of transmissions used to obtain a single frame of image. From both simulations and experiments, the extended theory holds a great promise for future HFR 3-D imaging
IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2006
Jian-yu Lu; Jiqi Cheng; Jing Wang
A general-purpose high frame rate (HFR) medical imaging system has been developed. This system has 128 independent linear transmitters, each of which is capable of producing an arbitrary broadband (about 0.05-10 MHz) waveform of up to plusmn144 V peak voltage on a 75-ohm resistive load using a 12-bit/40-MHz digital-to-analog converter. The system also has 128 independent, broadband (about 0.25-10 MHz), and time-variable-gain receiver channels, each of which has a 12-bit/40-MHz analog-to-digital converter and up to 512 MB of memory. The system is controlled by a personal computer (PC), and radio frequency echo data of each channel are transferred to the same PC via a standard USB 2.0 port for image reconstructions. Using the HFR imaging system, we have developed a new limited-diffraction array beam imaging method with square-wave aperture voltage weightings. With this method, in principle, only one or two transmitters are required to excite a fully populated two-dimensional (2-D) array transducer to achieve an equivalent dynamic focusing in both transmission and reception to reconstruct a high-quality three-dimensional image without the need of the time delays of traditional beam focusing arid steering, potentially simplifying the transmitter subsystem of an imager. To validate the method, for simplicity, 2-D imaging experiments were performed using the system. In the in vitro experiment, a custom-made, 128-element, 0.32-mm pitch, 3.5-MHz center frequency linear array transducer with about 50% fractional bandwidth was used to reconstruct images of an ATS 539 tissue-mimicking phantom at an axial distance of 130 mm with a field of view of more than 90deg. In the in vivo experiment of a human heart, images with a field of view of more than 90deg at 120-mm axial distance were obtained with a 128-element, 2.5-MHz center frequency, 0.15-mm pitch Acusori V2 phased array. To ensure that the system was operated under the limits set by the U.S. Food and Drug Administration, the mechanical index, thermal index, and acoustic output were measured. Results show that higher-quality images can be reconstructed with the square-wave aperture weighting method due to an increased penetration depth as compared to the exact weighting method developed previously, and a frame rate of 486 per second was achieved at a pulse repetition frequency of about 5348 Hz for the human heart
PLOS ONE | 2012
Shu Zhang; Jiqi Cheng; Yi-Xian Qin
Mechanotransduction has demonstrated potential for regulating tissue adaptation in vivo and cellular activities in vitro. It is well documented that ultrasound can produce a wide variety of biological effects in biological systems. For example, pulsed ultrasound can be used to noninvasively accelerate the rate of bone fracture healing. Although a wide range of studies has been performed, mechanism for this therapeutic effect on bone healing is currently unknown. To elucidate the mechanism of cellular response to mechanical stimuli induced by pulsed ultrasound radiation, we developed a method to apply focused acoustic radiation force (ARF) (duration, one minute) on osteoblastic MC3T3-E1 cells and observed cellular responses to ARF using a spinning disk confocal microscope. This study demonstrates that the focused ARF induced F-actin cytoskeletal rearrangement in MC3T3-E1 cells. In addition, these cells showed an increase in intracellular calcium concentration following the application of focused ARF. Furthermore, passive bending movement was noted in primary cilium that were treated with focused ARF. Cell viability was not affected. Application of pulsed ultrasound radiation generated only a minimal temperature rise of 0.1°C, and induced a streaming resulting fluid shear stress of 0.186 dyne/cm2, suggesting that hyperthermia and acoustic streaming might not be the main causes of the observed cell responses. In conclusion, these data provide more insight in the interactions between acoustic mechanical stress and osteoblastic cells. This experimental system could serve as basis for further exploration of the mechanosensing mechanism of osteoblasts triggered by ultrasound.
Ultrasonic Imaging | 2005
Jian-yu Lu; Jiqi Cheng
A method is developed for calculating fields produced with a two-dimensional (2D) array transducer. This method decomposes an arbitrary 2D aperture weighting function into a set of limited diffraction array beams. Using the analytical expressions of limited diffraction beams, arbitrary continuous wave (cw) or pulse wave (pw) fields of 2D arrays can be obtained with a simple superposition of these beams. In addition, this method can be simplified and applied to a 1D array transducer of a finite or infinite elevation height. For beams produced with axially symmetric aperture weighting functions, this method can be reduced to the Fourier-Bessel method studied previously where an annular array transducer can be used. The advantage of the method is that it is accurate and computationally efficient, especially in regions that are not far from the surface of the transducer (near field), where it is important for medical imaging. Both computer simulations and a synthetic array experiment are carried out to verify the method. Results (Bessel beam, focused Gaussian beam, X wave and asymmetric array beams) show that the method is accurate as compared to that using the Rayleigh-Sommerfeld diffraction formula and agrees well with the experiment.
Journal of the Acoustical Society of America | 2003
Paul D. Fox; Jiqi Cheng; Jian-yu Lu
A one-dimensional (1D) Fourier-Bessel series method for computing and tuning (beamforming) the linear lossless field of flat pulsed wave annular arrays is developed and supported with both numerical simulation and experimental verification. The technique represents a new method for modeling and tuning the propagated field by linking the quantized surface pressure profile to a known set of limited diffraction Bessel beams propagating into the medium. This enables derivation of an analytic expression for the field at any point in space and time in terms of the transducer surface pressure profile. Tuning of the field then also follows by formulating a least-squares design for the transducer surface pressure with respect to a given desired field in space and time. Simulated and experimental results for both field computation and tuning are presented in the context of a 10-ring annular array operating at a central frequency of 2.5 MHz in water.
IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2002
Paul D. Fox; Jiqi Cheng; Jian-yu Lu
A 1-D Fourier-Bessel series method for computing and tuning the linear lossless field of flat continuous wave (CW) annular arrays is given and discussed with both numerical simulation and experimental verification. The technique provides a new method for modelling and manipulating the propagated field by linking the quantized surface pressure profile to a set of limited diffraction Bessel beams propagating into the medium. In the limit, these become a known set of nondiffracting Bessel beams satisfying the lossless linear wave equation, which allow us to derive a linear matrix formulation for the field in terms of the ring pressures on the transducer surface. Tuning (beamforming) of the field then follows by formulating a least squares design with respect to the transducer ring pressures. Results are presented in the context of a 10-ring annular array operating at 2.5 MHz in water.
internaltional ultrasonics symposium | 2005
Jiqi Cheng; Jian-yu Lu
A high frame rate (HFR) imaging theory was developed based on limited diffraction beams in 1997 (up to 3750 three-dimensional (3D) volumes/s for a depth of 200 mm in biological soft tissues). In this paper, the theory is extended to include explicitly various transmission schemes such as multiple limited-diffraction array beams and steered plane waves. Computer simulations and in vitro and in vivo experiments were performed to verify the extended theory. Results show that the extended theory provides a continuous compromise between image quality and frame rate which is useful in clinic.
Ultrasound in Medicine and Biology | 2013
Sardar M. Zia Uddin; Michael Hadjiargyrou; Jiqi Cheng; Shu Zhang; Minyi Hu; Yi-Xian Qin
Microgravity (MG) is known to induce bone loss in astronauts during long-duration space mission because of a lack of sufficient mechanical stimulation under MG. It has been demonstrated that mechanical signals are essential for maintaining cell viability and motility, and they possibly serve as a countermeasure to the catabolic effects of MG. The objective of this study was to examine the effects of high-frequency acoustic wave signals on osteoblasts in a simulated microgravity (SMG) environment (created using 1-D clinostat bioreactor) using a modified low-intensity pulsed ultrasound (mLIPUS). Specifically, we evaluated the hypothesis that osteoblasts (human fetal osteoblastic cell line) exposure to mLIPUS for 20 min/d at 30 mW/cm(2) will significantly reduce the detrimental effects of SMG. Effects of SMG with mLIPUS were analyzed using the MTS proliferation assay for proliferation, phalloidin for F-actin staining, Sirius red stain for collagen, and Alizarin red for mineralization. Our data showed that osteoblast exposure to SMG results in significant decreases in proliferation (∼ -38% and ∼ -44% on days 4 and 6, respectively; p < 0.01), collagen content (∼ -22%; p < 0.05) and mineralization (∼ -37%; p < 0.05) and actin stress fibers. In contrast, mLIPUS stimulation in SMG condition significantly increases the rate of proliferation (∼24% by day 6; p < 0.05), collagen content (∼52%; p < 0.05) and matrix mineralization (∼25%; p < 0.001) along with restoring formation of actin stress fibers in the SMG-exposed osteoblasts. These data suggest that the acoustic wave can potentially be used as a countermeasure for disuse osteopenia.
Coherence Domain Optical Methods in Biomedical Science and Clinical Applications VI | 2002
Jian-yu Lu; Jiqi Cheng; Brent D. Cameron
Optical Coherence Tomography (OCT) is a relatively new type of imaging system for medical diagnosis. Because most current OCT systems use a sharply focused beam in tissues, they have a short depth of field (high image resolution is near the focus only). In this paper, limited diffraction beams of different orders are used to increase depth of field and to reduce sidelobes in OCT. Results show that the proposed OCT system has a lateral resolution of about 4.4 wavelengths (the central wavelength of the source is about 940 nm with a bandwidth of about 70 nm) and lower than -60 dB sidelobes over an entire depth of field of 4.5 mm with the diameter of the objective lens of 1 mm.
Ultrasonics | 2011
Jiqi Cheng; Wei Lin; Yi-Xian Qin
The distributed point source method (DPSM) was recently proposed for ultrasonic field modeling and other applications. This method uses distributed point sources, placed slightly behind transducer surface, to model the ultrasound field. The acoustic strength of each point source is obtained through matrix inversion that requires the number of target points on the transducer surface to be equal to the number of point sources. In this work, DPSM was extended and further developed to overcome the limitations of the original method and provide a solid mathematical explanation of the physical principle behind the method. With the extension, the acoustic strength of the point sources was calculated as the solution to the least squares minimization problem instead of using direct matrix inversion. As numerical examples, the ultrasound fields of circular and rectangular transducers were calculated using the extended and original DPSMs which were then systematically compared with the results calculated using the theoretical solution and the exact spatial impulse response method. The numerical results showed the extended method can model ultrasonic fields accurately without the scaling step required by the original method. The extended method has potential applications in ultrasonic field modeling, tissue characterization, nondestructive testing, and ultrasound system optimization.