Liangjun Lin
Stony Brook University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Liangjun Lin.
Biomacromolecules | 2013
Gaurav Lalwani; Allan M. Henslee; Behzad Farshid; Liangjun Lin; F. Kurtis Kasper; Yi-Xian Qin; Antonios G. Mikos; Balaji Sitharaman
This study investigates the efficacy of two-dimensional (2D) carbon and inorganic nanostructures as reinforcing agents for cross-linked composites of the biodegradable and biocompatible polymer polypropylene fumarate (PPF) as a function of nanostructure concentration. PPF composites were reinforced using various 2D nanostructures: single- and multiwalled graphene oxide nanoribbons (SWGONRs, MWGONRs), graphene oxide nanoplatelets (GONPs), and molybdenum disulfide nanoplatelets (MSNPs) at 0.01-0.2 weight% concentrations. Cross-linked PPF was used as the baseline control, and PPF composites reinforced with single- or multiwalled carbon nanotubes (SWCNTs, MWCNTs) were used as positive controls. Compression and flexural testing show a significant enhancement (i.e., compressive modulus = 35-108%, compressive yield strength = 26-93%, flexural modulus = 15-53%, and flexural yield strength = 101-262% greater than the baseline control) in the mechanical properties of the 2D-reinforced PPF nanocomposites. MSNP nanocomposites consistently showed the highest values among the experimental or control groups in all the mechanical measurements. In general, the inorganic nanoparticle MSNP showed a better or equivalent mechanical reinforcement compared to carbon nanomaterials, and 2D nanostructures (GONPs, MSNPs) are better reinforcing agents compared to one-dimensional (1D) nanostructures (e.g., SWCNTs). The results also indicated that the extent of mechanical reinforcement is closely dependent on the nanostructure morphology and follows the trend nanoplatelets > nanoribbons > nanotubes. Transmission electron microscopy of the cross-linked nanocomposites indicated good dispersion of nanomaterials in the polymer matrix without the use of a surfactant. The sol-fraction analysis showed significant changes in the polymer cross-linking in the presence of MSNP (0.01-0.2 wt %) and higher loading concentrations of GONP and MWGONR (0.1-0.2 wt %). The analysis of surface area and aspect ratio of the nanostructures taken together with the above results indicated differences in nanostructure architecture (2D vs 1D nanostructures), and the chemical compositions (inorganic vs carbon nanostructures), number of functional groups, and structural defects for the 2D nanostructures may be key properties that affect the mechanical properties of 2D nanostructure-reinforced PPF nanocomposites and the reason for the enhanced mechanical properties compared to the controls.
Acta Biomaterialia | 2013
Gaurav Lalwani; Allan M. Henslee; Behzad Farshid; Priyanka Parmar; Liangjun Lin; Yi-Xian Qin; F. Kurtis Kasper; Antonios G. Mikos; Balaji Sitharaman
In this study, we have investigated the efficacy of inorganic nanotubes as reinforcing agents to improve the mechanical properties of poly(propylene fumarate) (PPF) composites as a function of nanomaterial loading concentration (0.01-0.2 wt.%). Tungsten disulfide nanotubes (WSNTs) were used as reinforcing agents in the experimental group. Single- and multi-walled carbon nanotubes (SWCNTs and MWCNTs) were used as positive controls, and crosslinked PPF composites were used as the baseline control. Mechanical testing (compression and three-point bending) shows a significant enhancement (up to 28-190%) in the mechanical properties (compressive modulus, compressive yield strength, flexural modulus and flexural yield strength) of WSNT-reinforced PPF nanocomposites compared to the baseline control. In comparison to the positive controls, significant improvements in the mechanical properties of WSNT nanocomposites were also observed at various concentrations. In general, the inorganic nanotubes (WSNTs) showed mechanical reinforcement better than (up to 127%) or equivalent to that of carbon nanotubes (SWCNTs and MWCNTs). Sol fraction analysis showed significant increases in the crosslinking density of PPF in the presence of WSNTs (0.01-0.2 wt.%). Transmission electron microscopy (TEM) analysis on thin sections of crosslinked nanocomposites showed the presence of WSNTs as individual nanotubes in the PPF matrix, whereas SWCNTs and MWCNTs existed as micron-sized aggregates. The trend in the surface area of nanostructures obtained by Brunauer-Emmett-Teller (BET) surface area analysis was SWCNTs>MWCNTs>WSNTs. The BET surface area analysis, TEM analysis and sol fraction analysis results taken together suggest that chemical composition (inorganic vs. carbon nanomaterials), the presence of functional groups (such as sulfide and oxysulfide) and individual dispersion of the nanomaterials in the polymer matrix (absence of aggregation of the reinforcing agent) are the key parameters affecting the mechanical properties of nanostructure-reinforced PPF composites and the reason for the observed increases in the mechanical properties compared to the baseline and positive controls.
The FASEB Journal | 2015
Yi Zhou; Aron Mohan; Douglas C. Moore; Liangjun Lin; Frank Li Zhou; Jay Cao; Qian Wu; Yi-Xian Qin; Anthony M. Reginato; Michael G. Ehrlich; Wentian Yang
Genes that regulate osteoclast (OC) development and function in both physiologic and disease conditions remain incompletely understood. Shp2 (the Src homology‐2 domain containing protein tyrosine phosphatase 2), a ubiquitously expressed cytoplasmic protein tyrosine phosphatase, is implicated in regulating M‐CSF and receptor activator of nuclear factor‐κB ligand (RANKL)‐ evoked signaling; its role in osteoclastogenesis and bone homeostasis, however, remains unknown. Using a tissue‐specific gene knockout approach, we inactivated Shp2 expression in murine OCs. Shp2 mutant mice are phenotypically osteopetrotic, featuring a marked increase of bone volume (BV)/total volume (TV) (+42.8%), trabeculae number (Tb.N) (+84.1%), structure model index (+119%), and a decrease of trabecular thickness (Tb.Th) (‐34.1%) and trabecular spacing (Tb.Sp) (‐41.0%). Biochemical analyses demonstrate that Shp2 is required for RANKL‐induced formation of giant multinucleated OCs by up‐regulating the expression of nuclear factor of activated T cells, cytoplasmic 1 (Nfatc1), a master transcription factor that is indispensable for terminal OC differentiation. Shp2 deletion, however, has minimal effect on M‐CSF‐dependent survival and proliferation of OC precursors. Instead, its deficiency aborts the fusion of OC precursors and formation of multinucleated OCs and decreases bone matrix resorption. Moreover, pharmacological intervention of Shp2 is sufficient to prevent preosteoclast fusion in vitro. These findings uncover a novel mechanism through which Shp2 regulates osteoclastogenesis by promoting preosteoclast fusion. Shp2 or its signaling partners could potentially serve as pharmacological targets to regulate the population of OCs locally and/or systematically, and thus treat OC‐related diseases, such as periprosthetic osteolysis and osteoporosis.—Zhou, Y., Mohan, A., Moore, D. C., Lin, L., Zhou, F. L., Cao, J., Wu, Q., Qin, Y.‐X., Reginato, A. M., Ehrlich, M. G., Yang, W. SHP2 regulates osteoclastogenesis by promoting preosteoclast fusion. FASEB J. 29, 1635‐1645 (2015). www.fasebj.org
Bone | 2016
Dongye Zhang; Minyi Hu; Timothy Chu; Liangjun Lin; Jingyu Wang; Xiaodong Li; Hua Zhu Ke; Yi-Xian Qin
Osteoporosis is characterized by low bone mass and compromised trabecular architecture, and is commonly occurred in post-menopausal women with estrogen deficiency. In addition, prolonged mechanical unloading, i.e., long term bed rest, can exaggerate the bone loss. Sclerostin is a Wnt signaling antagonist and acts as a negative regulator for bone formation. A sclerostin-neutralizing antibody (Scl-Ab) increased bone mineral density in women with postmenopausal osteoporosis and healthy men. The objective of this study was to characterize the condition of bone loss in ovariectomized (OVX) rats with concurrent mechanical unloading and evaluate the effect of sclerostin antibody treatment in mitigating the prospective severe bone loss conditions in this model. Four-month-old OVX- or sham-operated female SD rats were used in this study. They were subjected to functional disuse induced by hind-limb suspension (HLS) or free ambulance after 2days of arrival. Subcutaneous injections with either vehicle or Scl-Ab at 25mg/kg were made twice per week for 5weeks from the time of HLS. μCT analyses demonstrated a significant decrease in distal metaphyseal trabecular architecture integrity with HLS, OVX and HLS+OVX (bone volume fraction decreased by 29%, 71% and 87% respectively). The significant improvements of various trabecular bone parameters (bone volume fraction increased by 111%, 229% and 297% respectively as compared with placebo group) with the administration of Scl-Ab are associated with stronger mechanical property and increased bone formation by histomorphometry. These results together indicate that Scl-Ab prevented the loss of trabecular bone mass and cortical bone strength in OVX rat model with concurrent mechanical unloading. The data suggested that monoclonal sclerostin-neutralizing antibody represents a promising therapeutic approach for severe osteoporosis induced by estrogen deficiency with concurrent mechanical unloading.
Bone | 2013
Minyi Hu; Frederick Serra-Hsu; Neville Bethel; Liangjun Lin; Suzanne Ferreri; Jiqi Cheng; Yi-Xian Qin
Physical signals within the bone, i.e. generated from mechanical loading, have the potential to initiate skeletal adaptation. Strong evidence has pointed to bone fluid flow (BFF) as a media between an external load and the bone cells, in which altered velocity and pressure can ultimately initiate the mechanotransduction and the remodeling process within the bone. Load-induced BFF can be altered by factors such as intramedullary pressure (ImP) and/or bone matrix strain, mediating bone adaptation. Previous studies have shown that BFF induced by ImP alone, with minimum bone strain, can initiate bone remodeling. However, identifying induced ImP dynamics and bone strain factor in vivo using a non-invasive method still remains challenging. To apply ImP as a means for alteration of BFF, it was hypothesized that non-invasive dynamic hydraulic stimulation (DHS) can induce local ImP with minimal bone strain to potentially elicit osteogenic adaptive responses via bone-muscle coupling. The goal of this study was to evaluate the immediate effects on local and distant ImP and strain in response to a range of loading frequencies using DHS. Simultaneous femoral and tibial ImP and bone strain values were measured in three 15-month-old female Sprague Dawley rats during DHS loading on the tibia with frequencies of 1Hz to 10Hz. DHS showed noticeable effects on ImP induction in the stimulated tibia in a nonlinear fashion in response to DHS over the range of loading frequencies, where they peaked at 2Hz. DHS at various loading frequencies generated minimal bone strain in the tibiae. Maximal bone strain measured at all loading frequencies was less than 8με. No detectable induction of ImP or bone strain was observed in the femur. This study suggested that oscillatory DHS may regulate the local fluid dynamics with minimal mechanical strain in the bone, which serves critically in bone adaptation. These results clearly implied DHSs potential as an effective, non-invasive intervention for osteopenia and osteoporosis treatments.
Journal of Biomechanics | 2012
Liangjun Lin; Jiqi Cheng; Wei Lin; Yi-Xian Qin
Bone has the ability to adapt its structure in response to the mechanical environment as defined as Wolffs Law. The alignment of trabecular structure is intended to adapt to the particular mechanical milieu applied to it. Due to the absence of normal mechanical loading, it will be extremely important to assess the anisotropic deterioration of bone during the extreme conditions, i.e., long term space mission and disease orientated disuse, to predict risk of fractures. The propagation of ultrasound wave in trabecular bone is substantially influenced by the anisotropy of the trabecular structure. Previous studies have shown that both ultrasound velocity and amplitude is dependent on the incident angle of the ultrasound signal into the bone sample. In this work, seven bovine trabecular bone balls were used for rotational ultrasound measurement around three anatomical axes to elucidate the ability of ultrasound to identify trabecular orientation. Both ultrasound attenuation (ATT) and fast wave velocity (UV) were used to calculate the principal orientation of the trabecular bone. By comparing to the mean intercept length (MIL) tensor obtained from μCT, the angle difference of the prediction by UV was 4.45°, while it resulted in 11.67° angle difference between direction predicted by μCT and the prediction by ATT. This result demonstrates the ability of ultrasound as a non-invasive measurement tool for the principal structural orientation of the trabecular bone.
Bone | 2014
Minyi Hu; Jiqi Cheng; Neville Bethel; Frederick Serra-Hsu; Suzanne Ferreri; Liangjun Lin; Yi-Xian Qin
Interstitial bone fluid flow (IBFF) is suggested as a communication medium that bridges external physical signals and internal cellular activities in the bone, which thus regulates bone remodeling. Intramedullary pressure (ImP) is one main regulatory factor of IBFF and bone adaptation related mechanotransduction. Our group has recently observed that dynamic hydraulic stimulation (DHS), as an external oscillatory muscle coupling, was able to induce local ImP with minimal bone strain as well as to mitigate disuse bone loss. The current study aimed to evaluate the dose dependent relationship between DHSs amplitude, i.e., 15 and 30mmHg, and in vivo ImP induction, as well as this correlation on bones phenotypic change. Simultaneous measurements of ImP and DHS cuff pressures were obtained from rats under DHS with various magnitudes and a constant frequency of 2Hz. ImP inductions and cuff pressures upon DHS loading showed a positively proportional response over the amplitude sweep. The relationship between ImP and DHS cuff pressure was evaluated and shown to be proportional, in which ImP was raised with increases of DHS cuff pressure amplitudes (R(2)=0.98). A 4-week in vivo experiment using a rat hindlimb suspension model demonstrated that the mitigation effect of DHS on disuse trabecular bone was highly dose dependent and related to DHSs amplitude, where a higher ImP led to a higher bone volume. This study suggested that sufficient physiological DHS is needed to generate ImP. Oscillatory DHS, potentially induces local fluid flow, has shown dose dependence in attenuation of disuse osteopenia.
Journal of Orthopaedic Trauma | 2017
Saman Vojdani; Laviel Fernandez; Jian Jiao; Tyler Enders; Steven Ortiz; Liangjun Lin; Yi-Xian Qin; David E. Komatsu; James Penna; Charles J. Ruotolo
Objectives: Injuries to the posterolateral corner of the knee can lead to chronic degenerative changes, external rotation instability, and varus instability if not repaired adequately. A proximal fibula avulsion fracture, referred to as an arcuate fracture, has been described in the literature, but a definitive repair technique has yet to be described. The objective of this study was to present a novel arcuate fracture repair technique, using a spiked-washer with an intramedullary screw, and to compare its biomechanical integrity to a previously described suture and bone tunnel method. Methods: Ten fresh-frozen cadaveric knees underwent a proximal fibula osteotomy to simulate a proximal fibula avulsion fracture. The lateral knee capsule and posterior cruciate ligament were also sectioned to create maximal varus instability. Five fibulas were repaired using a novel spiked-washer technique and the other 5 were repaired using the suture and bone tunnel method. The repaired knees were subjected to a monotonic varus load using a mechanical testing system instrument until failure of the repair or associated posterolateral corner structures. Results: Compared with the suture repair group, the spiked-washer repair group demonstrated a 100% increase in stiffness, 100% increase in yield, 110% increase in failure force, and 108% increase in energy to failure. Conclusions: The spiked-washer technique offers superior quasi-static biomechanical performance compared with suture repair with bone tunnels for arcuate fractures of the proximal fibula. Further clinical investigation of this technique is warranted and the results of this testing may lead to improved outcomes and patient satisfaction for proximal fibula avulsion fractures.
Journal of the Acoustical Society of America | 2015
Liangjun Lin; Wei Lin; Yi-Xian Qin
Quantitative ultrasound (QUS) is capable of predicting the principal structural orientation of trabecular bone; this orientation is highly correlated with the mechanical strength of trabecular bone. Irregular shape of bone, however, would increase variation in such a prediction, especially under human in vivo measurement. This study was designed to combine transmission and reflection modes of QUS measurement to improve the prediction for the structural and mechanical properties of trabecular bone. QUS, mechanical testing, and micro computed tomography (μCT) scanning were performed on 24 trabecular bone cubes harvested from a bovine distal femur to obtain the mechanical and structural parameters. Transmission and reflection modes of QUS measurement in the transverse and frontal planes were performed in a confined 60° angle range with 5° increment. The QUS parameters, attenuation (ATT) and velocity (UV), obtained from transmission mode, were normalized to the specimen thickness acquired from reflection mode. Analysis of covariance showed that the combined transmission-reflection modes improved prediction for the structural and Youngs modulus of bone in comparison to the traditional QUS measurement performed only in the medial-lateral orientation. In the transverse plane, significant improvement between QUS and μCT was found in ATT vs bone surface density (BS/BV) (p < 0.05), ATT vs trabecular thickness (Tb.Th) (p < 0.01), ATT vs degree of anisotropy (DA) (p < 0.05), UV vs trabecular bone number (Tb.N) (p < 0.05), and UV vs Tb.Th (p < 0.001). In the frontal plane, significant improvement was found in ATT vs structural model index (SMI) (p < 0.01), ATT vs bone volume fraction (BV/TV) (p < 0.01), ATT vs BS/BV (p < 0.001), ATT vs Tb.Th (p < 0.001), ATT vs DA (p < 0.001), and ATT vs modulus (p < 0.001), UV vs SMI (p < 0.01), UV vs BV/TV (p < 0.05), UV vs BS/BV (p < 0.05), UV vs Tb.Th (p < 0.01), UV vs trabecular spacing (p < 0.05), and UV vs modulus (p < 0.01). These data suggested that the combined transmission-reflection QUS method is capable of providing information more relevant to the structural and mechanical properties of trabecular bone.
internaltional ultrasonics symposium | 2012
Jiqi Cheng; Frederick Serra-Hsu; Liangjun Lin; Wei Lin; Yi-Xian Qin
The average BV/TV, TB.Th and Tb.Sp for the trabecular bone are 0.154±0.052, 0.203±0.025 mm and 0.812±0.151 mm, respectively. After normalization with sample thickness, the average normalized BUA (nBUA) is 24.8±9.5 dB/MHz/cm and 19.2±5.5 dB/MHz/cm for PS and PI respectively. PS nBUA is significantly different than PI BUA (paired t-test, p<;0.0001). On average, PS nBUA is 28.5% higher than PI BUA, and linear regression shows that PS nBUA can explain 81.2% of the variability in PI nBUA. Both PI nBUA and PS nBUA are highly correlated with BV/TV with coefficients of R=0.911 and R=0.898 (p<;0.0001), respectively. Both PI nBUA and PS nBUA are also highly correlated with Youngs modulus with coefficients of R=0.906 and R=0.822 (p<;0.0001), respectively. Results show that phase cancellation does have a significant effect on BUA. However, both PS nBUA and PI nBUA correlate well with the structural parameter, BV/TV and mechanical strength parameter, Youngs modulus.