Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jirair K. Bedoyan is active.

Publication


Featured researches published by Jirair K. Bedoyan.


Cell | 1993

Nucleosomal organization of telomere-specific chromatin in rat

Vladimir L. Makarov; Serguei Lejnine; Jirair K. Bedoyan; John P. Langmore

Rat liver interphase chromosomes have telomeres 20-100 kb in length. Micrococcal nuclease digestion of nuclei cleaves telomeres with a uniform 157 bp periodicity, producing soluble particles that sediment in sucrose gradients exactly like oligonucleosomes. The monomeric telomere particles comigrate with nucleosome core particles on nucleoprotein and DNA gels but do not bind H1. DNAase I cleaves telomere nucleoprotein into a series of bands spaced by about 10.4 bp and with the same intensity distribution as bands from bulk nucleosomes. Removal of H1 from chromatin alters the sedimentation properties of telomeres in parallel with bulk chromatin. Thus, telomeres of mammals are constructed of closely spaced nucleosomes, in contrast with the telomeres of lower eukaryotes, which show no evidence of nucleosomal structure.


NeuroImage | 2012

The impact of serotonin transporter (5-HTTLPR) genotype on the development of resting-state functional connectivity in children and adolescents: a preliminary report.

Jillian Lee Wiggins; Jirair K. Bedoyan; Scott Peltier; Samantha Ashinoff; Melisa Carrasco; Shih Jen Weng; Robert C. Welsh; Donna M. Martin; Christopher S. Monk

A fundamental component of brain development is the formation of large-scale networks across the cortex. One such network, the default network, undergoes a protracted development, displaying weak connectivity in childhood that strengthens in adolescence and becomes most robust in adulthood. Little is known about the genetic contributions to default network connectivity in adulthood or during development. Alterations in connectivity between posterior and frontal portions of the default network have been associated with several psychological disorders, including anxiety, autism spectrum disorders, schizophrenia, depression, and attention-deficit/hyperactivity disorder. These disorders have also been linked to variants of the serotonin transporter linked polymorphic region (5-HTTLPR). The LA allele of 5-HTTLPR results in higher serotonin transporter expression than the S allele or the rarer LG allele. 5-HTTLPR may influence default network connectivity, as the superior medial frontal region has been shown to be sensitive to changes in serotonin. Also, serotonin as a growth factor early in development may alter large-scale networks such as the default network. The present study examined the influence of 5-HTTLPR variants on connectivity between the posterior and frontal structures and its development in a cross-sectional study of 39 healthy children and adolescents. We found that children and adolescents homozygous for the S allele (S/S, n=10) showed weaker connectivity in the superior medial frontal cortex compared to those homozygous for the LA allele (LA/LA, n=13) or heterozygotes (S/LA, S/LG, n=16). Moreover, there was an age-by-genotype interaction, such that those with LA/LA genotype had the steepest age-related increase in connectivity between the posterior hub and superior medial frontal cortex, followed by heterozygotes. In contrast, individuals with the S/S genotype had the least age-related increase in connectivity strength. This preliminary report expands our understanding of the genetic influences on the development of large-scale brain connectivity and lays down the foundation for future research and replication of the results with a larger sample.


American Journal of Medical Genetics Part A | 2010

Duplication 16p11.2 in a Child With Infantile Seizure Disorder

Jirair K. Bedoyan; Ravinesh A. Kumar; Jyotsna Sudi; Faye S. Silverstein; Todd Ackley; Ramaswamy K. Iyer; Susan L. Christian; Donna M. Martin

Submicroscopic recurrent 16p11.2 rearrangements are associated with several neurodevelopmental disorders, including autism, mental retardation, and schizophrenia. The common 16p11.2 region includes 24 known genes, of which 22 are expressed in the developing human fetal nervous system. As yet, the mechanisms leading to neurodevelopmental abnormalities and the broader phenotypes associated with deletion or duplication of 16p11.2 have not been clarified. Here we report a child with spastic quadriparesis, refractory infantile seizures, severe global developmental delay, hypotonia, and microcephaly, and a de novo 598 kb 16p11.2 microduplication. Family history is negative for any of these features in parents and immediate family members. Sequencing analyses showed no mutations in DOC2A, QPRT, and SEZ6L2, genes within the duplicated 16p11.2 region that have been implicated in neuronal function and/or seizure related phenotypes. The childs clinical course is consistent with a rare seizure disorder called malignant migrating partial seizure disorder of infancy, raising the possibility that duplication or disruption of genes in the 16p11.2 interval may contribute to this severe disorder.


American Journal of Medical Genetics Part A | 2008

Branchiootorenal syndrome and oculoauriculovertebral spectrum features associated with duplication of SIX1, SIX6, and OTX2 resulting from a complex chromosomal rearrangement.

Zhishuo Ou; Donna M. Martin; Jirair K. Bedoyan; M. Lance Cooper; A. Craig Chinault; Pawel Stankiewicz; Sau Wai Cheung

We report on a 26‐month‐old boy with developmental delay and multiple congenital anomalies, including many features suggestive of either branchiootorenal syndrome (BOR) or oculoauriculovertebral spectrum (OAVS). Chromosomal microarray analysis (CMA) initially revealed a copy‐number gain with a single BAC clone (RP11‐79M1) mapping to 14q23.1. FISH analysis showed that the third copy of this genomic region was inserted into the long arm of one chromosome 13. The same pattern was also seen in the chromosomes of the father, who has mental retardation, short stature, hypernasal speech, and minor craniofacial anomalies, including tall forehead, and crowded dentition. Subsequent whole genome oligonucleotide microarray analysis revealed an ∼11.79 Mb duplication of chromosome 14q22.3–q23.3 and a loss of an ∼4.38 Mb sequence in 13q21.31–q21.32 in both the propositus and his father and FISH supported the apparent association of the two events. Chromosome 14q22.3–q23.3 contains 51 genes, including SIX1, SIX6, and OTX2. A locus for branchiootic syndrome (BOS) has been mapped to 14q21.3–q24.3, and designated as branchiootic syndrome 3 (BOS3). Interestingly, mutations in SIX1 have been reported in patients with BOR/BOS3. We propose that the increased dosage of SIX1, SIX6, or OTX2 may be responsible for the BOR and OAVS‐like features in this family.


Journal of Biological Chemistry | 1996

Condensation of Rat Telomere-specific Nucleosomal Arrays Containing Unusually Short DNA Repeats and Histone H1

Jirair K. Bedoyan; Serguei Lejnine; Vladimir L. Makarov; John P. Langmore

Vertebrate telomeres contain arrays of nucleosomes with unusually short and regular repeat lengths (Makarov, V. L., Lejnine, S., Bedoyan, J., and Langmore, J. P. (1993) Cell 73, 775-787; Lejnine, S., Makarov, V., and Langmore, J. P. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 2393-2397). In order to better define the specific structural features of telomere chromatin, we examined the condensation and H1 content of telomere nucleoproteins from rat liver. Velocity sedimentation analysis shows that telomeric nucleosome arrays condense with increasing ionic strength and molecular weight in a manner comparable with that of bulk chromatin despite the very short repeat length. However, these condensed structures do not exhibit the ~100-base pair deoxyribonuclease II repeat characteristic of condensed bulk chromatin. Frictional coefficient calculations suggest that telomere-specific higher order structure is more compact than bulk chromatin. Nucleoprotein gel electrophoresis shows that telomeric dinucleosomes from soluble chromatin contain H1. Finally, direct isolation and analysis of telomere nucleoproteins from formaldehyde-cross-linked nuclei indicate the presence of core histone proteins and H1. These results are consistent with the view that a major fraction of the long telomeres of rat are organized as specialized nucleosome arrays with features similar but not identical to those of bulk chromatin.


Pediatric Neurology | 2013

Leigh Syndrome in a Girl With a Novel DLD Mutation Causing E3 Deficiency

Shane C. Quinonez; Steven M. Leber; Donna M. Martin; Jess G. Thoene; Jirair K. Bedoyan

We present the biochemical and molecular diagnosis of dihydrolipoamide dehydrogenase deficiency (also known as E3 deficiency) and Leigh syndrome in a 14-year-old girl with learning disability and episodic encephalopathy and ketoacidosis. The diagnosis was based on values of plasma amino acids and urine organic acids, obtained during acute encephalopathy, lactic ketoacidosis, and liver failure, precipitated by infectious mononucleosis. Enzymatic and molecular analyses confirmed dihydrolipoamide dehydrogenase deficiency. E3 activity from cultured skin fibroblasts ranged from 9-29% of the mean. Molecular analysis revealed compound heterozygosity for novel and known pathogenic mutations (p.I353T and p.G136del, respectively). The patient received dietary augmentation and continuous renal replacement therapy, given her severe, persistent lactic acidosis. Acute decompensation resulted in magnetic resonance imaging changes involving the posterior aspect of the putamen, lateral, and medial thalami, substantia nigra, lateral geniculate bodies, and splenium of the corpus callosum. The cortex and subcortical white matter of the right and left occipital lobes and perirolandic region were also affected. In our review of molecularly confirmed patients with dihydrolipoamide dehydrogenase deficiency, Leigh syndrome was common. Our patient, whose most severe decompensation occurred at a more advanced age than previously reported, provides further evidence of the heterogeneous presentations of dihydrolipoamide dehydrogenase deficiency.


Human Brain Mapping | 2014

Age-related effect of serotonin transporter genotype on amygdala and prefrontal cortex function in adolescence

Jillian Lee Wiggins; Jirair K. Bedoyan; Melisa Carrasco; Johnna R. Swartz; Donna M. Martin; Christopher S. Monk

The S and LG alleles of the serotonin transporter‐linked polymorphic region (5‐HTTLPR) lower serotonin transporter expression. These low‐expressing alleles are linked to increased risk for depression and brain activation patterns found in depression (increased amygdala activation and decreased amygdala–prefrontal cortex connectivity). Paradoxically, serotonin transporter blockade relieves depression symptoms. Rodent models suggest that decreased serotonin transporter in early life produces depression that emerges in adolescence, whereas decreased serotonin transporter that occurs later in development ameliorates depression. However, no brain imaging research has yet investigated the moderating influence of human development on the link between 5‐HTTLPR and effect‐related brain function. We investigated the age‐related effect of 5‐HTTLPR on amygdala activation and amygdala–prefrontal cortex connectivity using a well‐replicated probe, an emotional face task, in children and adolescents aged 9–19 years. A significant genotype‐by‐age interaction predicted amygdala activation, such that the low‐expressing genotype (S/S and S/LG) group showed a greater increase in amygdala activation with age compared to the higher expressing (LA/LA and S/LA) group. Additionally, compared to the higher expressing group, the low‐expressing genotype group exhibited decreased connectivity between the right amygdala and ventromedial prefrontal cortex with age. Findings indicate that low‐expressing genotypes may not result in the corticolimbic profile associated with depression risk until later adolescence. Hum Brain Mapp 35:646–658, 2014.


Journal of Medical Genetics | 2012

Disruption of RAB40AL function leads to Martin–Probst syndrome, a rare X-linked multisystem neurodevelopmental human disorder

Jirair K. Bedoyan; Valerie M. Schaibley; Weiping Peng; Yongsheng Bai; Kajari Mondal; Amol Carl Shetty; Mark A. Durham; Joseph A. Micucci; Arti Dhiraaj; Jennifer M. Skidmore; Julie B Kaplan; Cindy Skinner; Charles E. Schwartz; Anthony Antonellis; Michael E. Zwick; James D. Cavalcoli; Jun Li; Donna M. Martin

Background and aim Martin–Probst syndrome (MPS) is a rare X-linked disorder characterised by deafness, cognitive impairment, short stature and distinct craniofacial dysmorphisms, among other features. The authors sought to identify the causative mutation for MPS. Methods and results Massively parallel sequencing in two affected, related male subjects with MPS identified a RAB40AL (also called RLGP) missense mutation (chrX:102,079,078-102,079,079AC→GA p.D59G; hg18). RAB40AL encodes a small Ras-like GTPase protein with one suppressor of cytokine signalling box. The p.D59G variant is located in a highly conserved region of the GTPase domain between β-2 and β-3 strands. Using RT-PCR, the authors show that RAB40AL is expressed in human fetal and adult brain and kidney, and adult lung, heart, liver and skeletal muscle. RAB40AL appears to be a primate innovation, with no orthologues found in mouse, Xenopus or zebrafish. Western analysis and fluorescence microscopy of GFP-tagged RAB40AL constructs from transiently transfected COS7 cells show that the D59G missense change renders RAB40AL unstable and disrupts its cytoplasmic localisation. Conclusions This is the first study to show that mutation of RAB40AL is associated with a human disorder. Identification of RAB40AL as the gene mutated in MPS allows for further investigations into the molecular mechanism(s) of RAB40AL and its roles in diverse processes such as cognition, hearing and skeletal development.


European Journal of Medical Genetics | 2009

First case of deletion of the faciogenital dysplasia 1 (FGD1) gene in a patient with Aarskog–Scott syndrome

Jirair K. Bedoyan; Michael J. Friez; Barbara R. DuPont; Ayesha Ahmad

Mutations within the faciogenital dysplasia 1 (FGD1) gene in individuals with clinical features of Aarskog-Scott syndrome (AAS) include missense mutations and insertions and deletions that result in frameshifts and premature terminations. Whole gene deletion and duplication represent other mutational possibilities not yet reported for FGD1 but known to exist for other genes such as MECP2. We report the first case of a boy with clinical features of AAS with deletion of FGD1 gene identified using an oligonucleotide-based X chromosome-specific microarray after attempts to generate amplicons for all of the FGD1 coding exons failed and BAC microarray analysis showed no abnormality.


NeuroImage: Clinical | 2013

The impact of serotonin transporter genotype on default network connectivity in children and adolescents with autism spectrum disorders

Jillian Lee Wiggins; Scott Peltier; Jirair K. Bedoyan; Melisa Carrasco; Robert C. Welsh; Donna M. Martin; Catherine Lord; Christopher S. Monk

Compared to healthy controls, individuals with autism spectrum disorders (ASD) have weaker posterior–anterior connectivity that strengthens less with age within the default network, a set of brain structures connected in the absence of a task and likely involved in social function. The serotonin transporter-linked polymorphic region (5-HTTLPR) genotypes that result in lowered serotonin transporter expression are associated with social impairment in ASD. Additionally, in healthy controls, low expressing 5-HTTLPR genotypes are associated with weaker default network connectivity. However, in ASD, the effect of 5-HTTLPR on the default network is unknown. We hypothesized that 5-HTTLPRs influence on posterior–anterior default network connectivity strength as well as on age-related changes in connectivity differs in the ASD group versus controls. Youth with ASD and healthy controls, ages 8–19, underwent a resting fMRI acquisition. Connectivity was calculated by correlating the posterior hub of the default network with all voxels. Triallelic genotype was assessed via PCR and Sanger sequencing. A genotype-by-diagnosis interaction significantly predicted posterior–anterior connectivity, such that low expressing genotypes (S/S, S/LG, LG/LG) were associated with stronger connectivity than high expressing genotypes (LA/LA, S/LA, LA/LG) in the ASD group, but the converse was true for controls. Also, youth with ASD and low expressing genotypes had greater age-related increases in connectivity values compared to those with high expressing genotypes and controls in either genotype group. Our findings suggest that the cascade of events from genetic variation to brain function differs in ASD. Also, low expressing genotypes may represent a subtype within ASD.

Collaboration


Dive into the Jirair K. Bedoyan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ming Chen

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge