Jiri Cervenka
University of Melbourne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jiri Cervenka.
Nature Physics | 2009
Jiri Cervenka; M. I. Katsnelson; Cfj Kees Flipse
Ferromagnetism usually only occurs in materials containing elements that form covalent 3d and 4f bonds. Its occurrence in pure carbon is therefore surprising, even controversial. A systematic magnetic force microscope study indicates that ferromagnetism in graphite is the result of localized spins that arise at grain boundaries.
Physical Review B | 2009
Jiri Cervenka; Cfj Kees Flipse
We report on scanning tunneling microscopy and spectroscopy of grain boundaries in highly oriented pyrolytic graphite. Grain boundaries showed a periodic structure and an enhanced charge density compared to the bare graphite surface. Two possible periodic structures have been observed along grain boundaries. A geometrical model producing periodically distributed point defects on the basal plane of graphite has been proposed to explain the structure of grain boundaries. Scanning tunneling spectroscopy on grain boundaries revealed two strong localized states at
Nature Communications | 2015
Nikolai Dontschuk; Alastair Stacey; Anton Tadich; Kevin J Rietwyk; Alex Schenk; Mark Thomas Edmonds; Olga Shimoni; C. I. Pakes; Steven Prawer; Jiri Cervenka
\ensuremath{-}0.3
Nanotechnology | 2010
Jiri Cervenka; Martin Ledinský; J. Stuchlík; H. Stuchlíková; S Bakardjieva; K. Hruška; A. Fejfar; J. Kočka
and 0.4 V which extended up to a 4 nm distance from grain boundaries.
ACS Applied Materials & Interfaces | 2014
Olga Shimoni; Jiri Cervenka; Timothy J. Karle; Kate Fox; Brant C. Gibson; Snjezana Tomljenovic-Hanic; Andrew D. Greentree; Steven Prawer
Fast and reliable DNA sequencing is a long-standing target in biomedical research. Recent advances in graphene-based electrical sensors have demonstrated their unprecedented sensitivity to adsorbed molecules, which holds great promise for label-free DNA sequencing technology. To date, the proposed sequencing approaches rely on the ability of graphene electric devices to probe molecular-specific interactions with a graphene surface. Here we experimentally demonstrate the use of graphene field-effect transistors (GFETs) as probes of the presence of a layer of individual DNA nucleobases adsorbed on the graphene surface. We show that GFETs are able to measure distinct coverage-dependent conductance signatures upon adsorption of the four different DNA nucleobases; a result that can be attributed to the formation of an interface dipole field. Comparison between experimental GFET results and synchrotron-based material analysis allowed prediction of the ultimate device sensitivity, and assessment of the feasibility of single nucleobase sensing with graphene.
Scientific Reports | 2016
Hualin Zhan; David J. Garrett; Nicholas V. Apollo; Kumaravelu Ganesan; Desmond W. M. Lau; Steven Prawer; Jiri Cervenka
Silicon nanowires and nanoneedles show promise for many device applications in nanoelectronics and nanophotonics, but the remaining challenge is to grow them at low temperatures on low-cost materials. Here we present plasma-enhanced chemical vapor deposition of crystalline/amorphous Si nanoneedles on glass at temperatures as low as 250 °C. High resolution electron microscopy and micro-Raman spectroscopy have been used to study the crystal structure and the growth mechanism of individual Si nanoneedles. The H(2) dilution of the SiH(4) plasma working gas has caused the formation of extremely sharp nanoneedle tips that in some cases do not contain a catalytic particle at the end.
Applied Physics Letters | 2012
Jiri Cervenka; Nikolai Dontschuk; François Ladouceur; S. G. Duvall; Steven Prawer
We demonstrate a robust templated approach to pattern thin films of chemical vapor deposited nanocrystalline diamond grown from monodispersed nanodiamond (mdND) seeds. The method works on a range of substrates, and we herein demonstrate the method using silicon, aluminum nitride (AlN), and sapphire substrates. Patterns are defined using photo- and e-beam lithography, which are seeded with mdND colloids and subsequently introduced into microwave assisted chemical vapor deposition reactor to grow patterned nanocrystalline diamond films. In this study, we investigate various factors that affect the selective seeding of different substrates to create high quality diamond thin films, including mdND surface termination, zeta potential, surface treatment, and plasma cleaning. Although the electrostatic interaction between mdND colloids and substrates is the main process driving adherence, we found that chemical reaction (esterification) or hydrogen bonding can potentially dominate the seeding process. Leveraging the knowledge on these different interactions, we optimize fabrication protocols to eliminate unwanted diamond nucleation outside the patterned areas. Furthermore, we have achieved the deposition of patterned diamond films and arrays over a range of feature sizes. This study contributes to a comprehensive understanding of the mdND-substrate interaction that will enable the fabrication of integrated nanocrystalline diamond thin films for microelectronics, sensors, and tissue culturing applications.
Nanotechnology | 2010
Jiri Cervenka; Cfj Kees Flipse
High surface area electrode materials are of interest for a wide range of potential applications such as super-capacitors and electrochemical cells. This paper describes a fabrication method of three-dimensional (3D) graphene conformally coated on nanoporous insulating substrate with uniform nanopore size. 3D graphene films were formed by controlled graphitization of diamond-like amorphous carbon precursor films, deposited by plasma-enhanced chemical vapour deposition (PECVD). Plasma-assisted graphitization was found to produce better quality graphene than a simple thermal graphitization process. The resulting 3D graphene/amorphous carbon/alumina structure has a very high surface area, good electrical conductivity and exhibits excellent chemically stability, providing a good material platform for electrochemical applications. Consequently very large electrochemical capacitance values, as high as 2.1 mF for a sample of 10 mm3, were achieved. The electrochemical capacitance of the material exhibits a dependence on bias voltage, a phenomenon observed by other groups when studying graphene quantum capacitance. The plasma-assisted graphitization, which dominates the graphitization process, is analyzed and discussed in detail.
Nano Letters | 2015
Mark Thomas Edmonds; Laurens H. Willems van Beveren; O. Klochan; Jiri Cervenka; Kumaravelu Ganesan; Steven Prawer; L. Ley; A. R. Hamilton; C. I. Pakes
Synthetic diamond/AlN composite materials have been fabricated by a combination of microwave plasma-assisted chemical vapor deposition and molecular beam epitaxy. These wide band gap semiconductor heterojunctions show promises for many applications, including thermal management, deep ultraviolet light emitting devices, and high power and high temperature electronics. Here, we report results of an interface study of polycrystalline diamond layers grown on single crystal AlN(0001). High resolution transmission microscopy revealed atomically sharp interfaces between diamond and AlN. Temperature dependent Raman spectroscopy measurements showed reduced thermal resistance on diamond-coated AlN substrates compared to uncoated AlN at temperatures above 330 K.
Physical Review B | 2010
Jiri Cervenka; van de K Kevin Ruit; Cfj Kees Flipse
Many large molecular complexes are limited in thin film applications by their insufficient thermal stability, which excludes deposition via commonly used vapour phase deposition methods. Here we demonstrate an alternative way of monolayer formation of large molecules by a simple spray coating method under ambient conditions. This technique has been successfully applied on C(60) dissolved in toluene and carbon disulfide. Monolayer thick C(60) films have been formed on graphite and gold surfaces at particular deposition parameters, as confirmed by atomic force and scanning tunnelling microscopies. Structural and electronic properties of spray coated C(60) films on Au(111) have been found comparable to thermally evaporated C(60). We attribute the monolayer formation in spray coating to a crystallization process mediated by an ultrathin solution film on a sample surface.