Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiri Friml is active.

Publication


Featured researches published by Jiri Friml.


Nature | 2005

Auxin inhibits endocytosis and promotes its own efflux from cells.

Tomasz Paciorek; Eva Zazimalova; Nadia Ruthardt; Jan Petrášek; York-Dieter Stierhof; Jürgen Kleine-Vehn; David A. Morris; Neil Emans; Gerd Jürgens; Niko Geldner; Jiri Friml

One of the mechanisms by which signalling molecules regulate cellular behaviour is modulating subcellular protein translocation. This mode of regulation is often based on specialized vesicle trafficking, termed constitutive cycling, which consists of repeated internalization and recycling of proteins to and from the plasma membrane. No such mechanism of hormone action has been shown in plants although several proteins, including the PIN auxin efflux facilitators, exhibit constitutive cycling. Here we show that a major regulator of plant development, auxin, inhibits endocytosis. This effect is specific to biologically active auxins and requires activity of the Calossin-like protein BIG. By inhibiting the internalization step of PIN constitutive cycling, auxin increases levels of PINs at the plasma membrane. Concomitantly, auxin promotes its own efflux from cells by a vesicle-trafficking-dependent mechanism. Furthermore, asymmetric auxin translocation during gravitropism is correlated with decreased PIN internalization. Our data imply a previously undescribed mode of plant hormone action: by modulating PIN protein trafficking, auxin regulates PIN abundance and activity at the cell surface, providing a mechanism for the feedback regulation of auxin transport.


Plant Journal | 2009

ABCB19/PGP19 stabilises PIN1 in membrane microdomains in Arabidopsis

Boosaree Titapiwatanakun; Joshua J. Blakeslee; Anindita Bandyopadhyay; Haibing Yang; Jozef Mravec; Michael Sauer; Yan Cheng; Jiri Adamec; Akitomo Nagashima; Markus Geisler; Tatsuya Sakai; Jiri Friml; Wendy Ann Peer; Angus S. Murphy

Auxin transport is mediated at the cellular level by three independent mechanisms that are characterised by the PIN-formed (PIN), P-glycoprotein (ABCB/PGP) and AUX/LAX transport proteins. The PIN and ABCB transport proteins, best represented by PIN1 and ABCB19 (PGP19), have been shown to coordinately regulate auxin efflux. When PIN1 and ABCB19 coincide on the plasma membrane, their interaction enhances the rate and specificity of auxin efflux and the dynamic cycling of PIN1 is reduced. However, ABCB19 function is not regulated by the dynamic cellular trafficking mechanisms that regulate PIN1 in apical tissues, as localisation of ABCB19 on the plasma membrane was not inhibited by short-term treatments with latrunculin B, oryzalin, brefeldin A (BFA) or wortmannin--all of which have been shown to alter PIN1 and/or PIN2 plasma membrane localisation. When taken up by endocytosis, the styryl dye FM4-64 labels diffuse rather than punctuate intracellular bodies in abcb19 (pgp19), and some aggregations of PIN1 induced by short-term BFA treatment did not disperse after BFA washout in abcb19. Although the subcellular localisations of ABCB19 and PIN1 in the reciprocal mutant backgrounds were like those in wild type, PIN1 plasma membrane localisation in abcb19 roots was more easily perturbed by the detergent Triton X-100, but not other non-ionic detergents. ABCB19 is stably associated with sterol/sphingolipid-enriched membrane fractions containing BIG/TIR3 and partitions into Triton X-100 detergent-resistant membrane (DRM) fractions. In the wild type, PIN1 was also present in DRMs, but was less abundant in abcb19 DRMs. These observations suggested a rationale for the observed lack of auxin transport activity when PIN1 is expressed in a non-plant heterologous system. PIN1 was therefore expressed in Schizosaccharomyces pombe, which has plant-like sterol-enriched microdomains, and catalysed auxin transport in these cells. These data suggest that ABCB19 stabilises PIN1 localisation at the plasma membrane in discrete cellular subdomains where PIN1 and ABCB19 expression overlaps.


The Plant Cell | 2007

Cytokinins Act Directly on Lateral Root Founder Cells to Inhibit Root Initiation

Laurent Laplaze; Eva Benková; Ilda Casimiro; Lies Maes; Steffen Vanneste; Ranjan Swarup; Dolf Weijers; Vanessa Calvo; Boris Parizot; Maria Begoña Herrera-Rodriguez; Remko Offringa; Neil S. Graham; Patrick Doumas; Jiri Friml; Didier Bogusz; Tom Beeckman; Malcolm J. Bennett

In Arabidopsis thaliana, lateral roots are formed from root pericycle cells adjacent to the xylem poles. Lateral root development is regulated antagonistically by the plant hormones auxin and cytokinin. While a great deal is known about how auxin promotes lateral root development, the mechanism of cytokinin repression is still unclear. Elevating cytokinin levels was observed to disrupt lateral root initiation and the regular pattern of divisions that characterizes lateral root development in Arabidopsis. To identify the stage of lateral root development that is sensitive to cytokinins, we targeted the expression of the Agrobacterium tumefaciens cytokinin biosynthesis enzyme isopentenyltransferase to either xylem-pole pericycle cells or young lateral root primordia using GAL4-GFP enhancer trap lines. Transactivation experiments revealed that xylem-pole pericycle cells are sensitive to cytokinins, whereas young lateral root primordia are not. This effect is physiologically significant because transactivation of the Arabidopsis cytokinin degrading enzyme cytokinin oxidase 1 in lateral root founder cells results in increased lateral root formation. We observed that cytokinins perturb the expression of PIN genes in lateral root founder cells and prevent the formation of an auxin gradient that is required to pattern lateral root primordia.


Cell | 2010

ABP1 Mediates Auxin Inhibition of Clathrin-Dependent Endocytosis in Arabidopsis

Stéphanie Robert; Jürgen Kleine-Vehn; Elke Barbez; Michael Sauer; Tomasz Paciorek; Pawel Radoslaw Baster; Steffen Vanneste; Jing Zhang; Sibu Simon; Milada Čovanová; Ken-ichiro Hayashi; Pankaj Dhonukshe; Zhenbiao Yang; Sebastian Y. Bednarek; Alan M. Jones; Christian Luschnig; Fernando Aniento; Eva Zažímalová; Jiri Friml

Spatial distribution of the plant hormone auxin regulates multiple aspects of plant development. These self-regulating auxin gradients are established by the action of PIN auxin transporters, whose activity is regulated by their constitutive cycling between the plasma membrane and endosomes. Here, we show that auxin signaling by the auxin receptor AUXIN-BINDING PROTEIN 1 (ABP1) inhibits the clathrin-mediated internalization of PIN proteins. ABP1 acts as a positive factor in clathrin recruitment to the plasma membrane, thereby promoting endocytosis. Auxin binding to ABP1 interferes with this action and leads to the inhibition of clathrin-mediated endocytosis. Our study demonstrates that ABP1 mediates a nontranscriptional auxin signaling that regulates the evolutionarily conserved process of clathrin-mediated endocytosis and suggests that this signaling may be essential for the developmentally important feedback of auxin on its own transport.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Monoubiquitin-dependent endocytosis of the IRON-REGULATED TRANSPORTER 1 (IRT1) transporter controls iron uptake in plants

Marie Barberon; Eenric Zelazny; Stéphanie Robert; Geneviève Conejero; Cathy Curie; Jiri Friml; Grégory Vert

Plants take up iron from the soil using the IRON-REGULATED TRANSPORTER 1 (IRT1) high-affinity iron transporter at the root surface. Sophisticated regulatory mechanisms allow plants to tightly control the levels of IRT1, ensuring optimal absorption of essential but toxic iron. Here, we demonstrate that overexpression of Arabidopsis thaliana IRT1 leads to constitutive IRT1 protein accumulation, metal overload, and oxidative stress. IRT1 is unexpectedly found in trans-Golgi network/early endosomes of root hair cells, and its levels and localization are unaffected by iron nutrition. Using pharmacological approaches, we show that IRT1 cycles to the plasma membrane to perform iron and metal uptake at the cell surface and is sent to the vacuole for proper turnover. We also prove that IRT1 is monoubiquitinated on several cytosol-exposed residues in vivo and that mutation of two putative monoubiquitination target residues in IRT1 triggers stabilization at the plasma membrane and leads to extreme lethality. Together, these data suggest a model in which monoubiquitin-dependent internalization/sorting and turnover keep the plasma membrane pool of IRT1 low to ensure proper iron uptake and to prevent metal toxicity. More generally, our work demonstrates the existence of monoubiquitin-dependent trafficking to lytic vacuoles in plants and points to proteasome-independent turnover of plasma membrane proteins.


The Plant Cell | 2003

Cell Polarity and PIN Protein Positioning in Arabidopsis Require STEROL METHYLTRANSFERASE1 Function

Viola Willemsen; Jiri Friml; Markus Grebe; Albert van den Toorn; Klaus Palme; Ben Scheres

Plants have many polarized cell types, but relatively little is known about the mechanisms that establish polarity. The orc mutant was identified originally by defects in root patterning, and positional cloning revealed that the affected gene encodes STEROL METHYLTRANSFERASE1, which is required for the appropriate synthesis and composition of major membrane sterols. smt1orc mutants displayed several conspicuous cell polarity defects. Columella root cap cells revealed perturbed polar positioning of different organelles, and in the smt1orc root epidermis, polar initiation of root hairs was more randomized. Polar auxin transport and expression of the auxin reporter DR5-β-glucuronidase were aberrant in smt1orc. Patterning defects in smt1orc resembled those observed in mutants of the PIN gene family of putative auxin efflux transporters. Consistently, the membrane localization of the PIN1 and PIN3 proteins was disturbed in smt1orc, whereas polar positioning of the influx carrier AUX1 appeared normal. Our results suggest that balanced sterol composition is a major requirement for cell polarity and auxin efflux in Arabidopsis.


Current Biology | 2011

A Mutually Inhibitory Interaction between Auxin and Cytokinin Specifies Vascular Pattern in Roots

Anthony Bishopp; Hanna Help; Sedeer El-Showk; Dolf Weijers; Ben Scheres; Jiri Friml; Eva Benková; Ari Pekka Mähönen; Ykä Helariutta

BACKGROUND Whereas the majority of animals develop toward a predetermined body plan, plants show iterative growth and continually produce new organs and structures from actively dividing meristems. This raises an intriguing question: How are these newly developed organs patterned? In Arabidopsis embryos, radial symmetry is broken by the bisymmetric specification of the cotyledons in the apical domain. Subsequently, this bisymmetry is propagated to the root promeristem. RESULTS Here we present a mutually inhibitory feedback loop between auxin and cytokinin that sets distinct boundaries of hormonal output. Cytokinins promote the bisymmetric distribution of the PIN-FORMED (PIN) auxin efflux proteins, which channel auxin toward a central domain. High auxin promotes transcription of the cytokinin signaling inhibitor AHP6, which closes the interaction loop. This bisymmetric auxin response domain specifies the differentiation of protoxylem in a bisymmetric pattern. In embryonic roots, cytokinin is required to translate a bisymmetric auxin response in the cotyledons to a bisymmetric vascular pattern in the root promeristem. CONCLUSIONS Our results present an interactive feedback loop between hormonal signaling and transport by which small biases in hormonal input are propagated into distinct signaling domains to specify the vascular pattern in the root meristem. It is an intriguing possibility that such a mechanism could transform radial patterns and allow continuous vascular connections between other newly emerging organs.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Auxin regulates distal stem cell differentiation in Arabidopsis roots.

Zhaojun Ding; Jiri Friml

The stem cell niche in the root meristem is critical for the development of the plant root system. The plant hormone auxin acts as a versatile trigger in many developmental processes, including the regulation of root growth, but its role in the control of the stem cell activity remains largely unclear. Here we show that local auxin levels, determined by biosynthesis and intercellular transport, mediate maintenance or differentiation of distal stem cells in the Arabidopsis thaliana roots. Genetic analysis shows that auxin acts upstream of the major regulators of the stem cell activity, the homeodomain transcription factor WOX5, and the AP-2 transcription factor PLETHORA. Auxin signaling for differentiation of distal stem cells requires the transcriptional repressor IAA17/AXR3 as well as the ARF10 and ARF16 auxin response factors. ARF10 and ARF16 activities repress the WOX5 transcription and restrict it to the quiescent center, where WOX5, in turn, is needed for the activity of PLETHORA. Our investigations reveal that long-distance auxin signals act upstream of the short-range network of transcriptional factors to mediate the differentiation of distal stem cells in roots.


The Plant Cell | 2002

hydra Mutants of Arabidopsis Are Defective in Sterol Profiles and Auxin and Ethylene Signaling

Martin Souter; Jennifer F. Topping; Margaret Pullen; Jiri Friml; Klaus Palme; Rachel M. Hackett; Donald Grierson; Keith Lindsey

The hydra mutants of Arabidopsis are characterized by a pleiotropic phenotype that shows defective embryonic and seedling cell patterning, morphogenesis, and root growth. We demonstrate that the HYDRA1 gene encodes a Δ8-Δ7 sterol isomerase, whereas HYDRA2 encodes a sterol C14 reductase, previously identified as the FACKEL gene product. Seedlings mutant for each gene are similarly defective in the concentrations of the three major Arabidopsis sterols. Promoter::reporter gene analysis showed misexpression of the auxin-regulated DR5 and ACS1 promoters and of the epidermal cell file–specific GL2 promoter in the mutants. The mutants exhibit enhanced responses to auxin. The phenotypes can be rescued partially by inhibition of auxin and ethylene signaling but not by exogenous sterols or brassinosteroids. We propose a model in which correct sterol profiles are required for regulated auxin and ethylene signaling through effects on membrane function.


PLOS Biology | 2012

ROP GTPase-dependent actin microfilaments promote PIN1 polarization by localized inhibition of clathrin-dependent endocytosis

Shingo Nagawa; Tongda Xu; Deshu Lin; Pankaj Dhonukshe; Xingxing Zhang; Jiri Friml; Ben Scheres; Ying Fu; Zhenbiao Yang

A study in leaf epidermal pavement cells reveals that auxin activation of a Rho-like GTPase from plants induces inhibition of endocytosis through the clathrin-mediated pathway by regulating the accumulation of cortical F-actin.

Collaboration


Dive into the Jiri Friml's collaboration.

Top Co-Authors

Avatar

Stéphanie Robert

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ranjan Swarup

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ben Scheres

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Zhenbiao Yang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eva Benková

Institute of Science and Technology Austria

View shared research outputs
Researchain Logo
Decentralizing Knowledge