Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhenbiao Yang is active.

Publication


Featured researches published by Zhenbiao Yang.


Plant Physiology | 2003

Analysis of the Small GTPase Gene Superfamily of Arabidopsis

Vanessa Vernoud; Amy C. Horton; Zhenbiao Yang; Erik Nielsen

Small GTP-binding proteins regulate diverse processes in eukaryotic cells such as signal transduction, cell proliferation, cytoskeletal organization, and intracellular membrane trafficking. These proteins function as molecular switches that cycle between “active” and “inactive” states, and this cycle is linked to the binding and hydrolysis of GTP. The Arabidopsis genome contains 93 genes that encode small GTP-binding protein homologs. Phylogenetic analysis of these genes shows that plants contain Rab, Rho, Arf, and Ran GTPases, but no Ras GTPases. We have assembled complete lists of these small GTPases families, as well as accessory proteins that control their activity, and review what is known of the functions of individual members of these families in Arabidopsis. We also discuss the possible roles of these GTPases in relation to their similarity to orthologs with known functions and localizations in yeast and/or animal systems.


The Plant Cell | 1999

Control of Pollen Tube Tip Growth by a Rop GTPase–Dependent Pathway That Leads to Tip-Localized Calcium Influx

Hai Li; Yakang Lin; Rachel M. Heath; Michael X. Zhu; Zhenbiao Yang

We have shown that Rop1At, a pollen-specific Rop GTPase that is a member of the Rho family of small GTP binding proteins, acts as a key molecular switch controlling tip growth in Arabidopsis pollen tubes. Pollen-specific expression of constitutively active rop1at mutants induced isotropic growth of pollen tubes. Overexpression of wild-type Arabidopsis Rop1At led to ectopic accumulation of Rop1At in the plasma membrane at the tip and caused depolarization of pollen tube growth, which was less severe than that induced by the constitutively active rop1at. These results indicate that both Rop1At signaling and polar localization are critical for controlling the site of tip growth. Dominant negative rop1at mutants or antisense rop1at RNA inhibited tube growth at 0.5 mM extracellular Ca2+, but growth inhibition was reversed by higher extracellular Ca2+. Injection of anti-Rop antibodies disrupted the tip-focused intracellular Ca2+ gradient known to be crucial for tip growth. These studies provide strong evidence for a Rop GTPase–dependent tip growth pathway that couples the control of growth sites with the rate of tip growth through the regulation of tip-localized extracellular Ca2+ influxes and formation of the tip-high intracellular Ca2+ gradient in pollen tubes.


Cell | 2005

Arabidopsis Interdigitating Cell Growth Requires Two Antagonistic Pathways with Opposing Action on Cell Morphogenesis

Ying Fu; Ying Gu; Zhiliang Zheng; Geoffrey O. Wasteneys; Zhenbiao Yang

Coordinating growth and communication between adjacent cells is a critical yet poorly understood aspect of tissue development and organ morphogenesis. We report a Rho GTPase signaling network underlying the jigsaw puzzle appearance of Arabidopsis leaf pavement cells, in which localized outgrowth in one cell is coordinated with localized inhibition of outgrowth of the adjacent cell to form interdigitating lobes and indentations. Locally activated ROP2, a Rho-related GTPase from plants, activates RIC4 to promote the assembly of cortical actin microfilaments required for localized outgrowth. Meanwhile, ROP2 inactivates another target RIC1, whose activity promotes well-ordered cortical microtubules. RIC1-dependent microtubule organization not only locally inhibits outgrowth but in turn suppresses ROP2 activation in the indentation zones. Thus, outgrowth-promoting ROP2 and outgrowth-inhibiting RIC1 pathways antagonize each other. We propose that the counteractivity of these two pathways demarcates outgrowing and indenting cortical domains, coordinating a process that gives rise to interdigitations between adjacent pavement cells.


The Plant Cell | 1999

The CLAVATA1 Receptor-like Kinase Requires CLAVATA3 for Its Assembly into a Signaling Complex That Includes KAPP and a Rho-Related Protein

Amy E. Trotochaud; Tong Hao; Guang Wu; Zhenbiao Yang; Steven E. Clark

The CLAVATA1 (CLV1) and CLAVATA3 (CLV3) genes are required to maintain the balance between cell proliferation and organ formation at the Arabidopsis shoot and flower meristems. CLV1 encodes a receptor-like protein kinase. We have found that CLV1 is present in two protein complexes in vivo. One is ~185 kD, and the other is ~450 kD. In each complex, CLV1 is part of a disulfide-linked multimer of ~185 kD. The 450-kD complex contains the protein phosphatase KAPP, which is a negative regulator of CLV1 signaling, and a Rho GTPase–related protein. In clv1 and clv3 mutants, CLV1 is found primarily in the 185-kD complex. We propose that CLV1 is present as an inactive disulfide-linked heterodimer and that CLV3 functions to promote the assembly of the active 450-kD complex, which then relays signal transduction through a Rho GTPase.


Cell | 2010

ABP1 Mediates Auxin Inhibition of Clathrin-Dependent Endocytosis in Arabidopsis

Stéphanie Robert; Jürgen Kleine-Vehn; Elke Barbez; Michael Sauer; Tomasz Paciorek; Pawel Radoslaw Baster; Steffen Vanneste; Jing Zhang; Sibu Simon; Milada Čovanová; Ken-ichiro Hayashi; Pankaj Dhonukshe; Zhenbiao Yang; Sebastian Y. Bednarek; Alan M. Jones; Christian Luschnig; Fernando Aniento; Eva Zažímalová; Jiri Friml

Spatial distribution of the plant hormone auxin regulates multiple aspects of plant development. These self-regulating auxin gradients are established by the action of PIN auxin transporters, whose activity is regulated by their constitutive cycling between the plasma membrane and endosomes. Here, we show that auxin signaling by the auxin receptor AUXIN-BINDING PROTEIN 1 (ABP1) inhibits the clathrin-mediated internalization of PIN proteins. ABP1 acts as a positive factor in clathrin recruitment to the plasma membrane, thereby promoting endocytosis. Auxin binding to ABP1 interferes with this action and leads to the inhibition of clathrin-mediated endocytosis. Our study demonstrates that ABP1 mediates a nontranscriptional auxin signaling that regulates the evolutionarily conserved process of clathrin-mediated endocytosis and suggests that this signaling may be essential for the developmentally important feedback of auxin on its own transport.


The Plant Cell | 2002

The Arabidopsis Rop2 GTPase Is a Positive Regulator of Both Root Hair Initiation and Tip Growth

Mark A. Jones; Jun-Jiang Shen; Ying Fu; Hai Li; Zhenbiao Yang; Claire S. Grierson

Root hairs provide a model system for the study of cell polarity. We examined the possibility that one or more members of the distinct plant subfamily of RHO monomeric GTPases, termed Rop, may function as molecular switches regulating root hair growth. Specific Rops are known to control polar growth in pollen tubes. Overexpressing Rop2 (Rop2 OX) resulted in a strong root hair phenotype, whereas overexpressing Rop7 appeared to inhibit root hair tip growth. Overexpressing Rops from other phylogenetic subgroups of Rop did not give a root hair phenotype. We confirmed that Rop2 was expressed throughout hair development. Rop2 OX and constitutively active GTP-bound rop2 (CA-rop2) led to additional and misplaced hairs on the cell surface as well as longer hairs. Furthermore, CA-rop2 depolarized root hair tip growth, whereas Rop2 OX resulted in hairs with multiple tips. Dominant negative GDP-bound Rop2 reduced the number of hair-forming sites and led to shorter and wavy hairs. Green fluorescent protein–Rop2 localized to the future site of hair formation well before swelling formation and to the tip throughout hair development. We conclude that the Arabidopsis Rop2 GTPase acts as a positive regulatory switch in the earliest visible stage in hair development, swelling formation, and in tip growth.


The Plant Cell | 2002

The ROP2 GTPase Controls the Formation of Cortical Fine F-Actin and the Early Phase of Directional Cell Expansion during Arabidopsis Organogenesis

Ying Fu; Hai Li; Zhenbiao Yang

Polar cell expansion in differentiating tissues is critical for the development and morphogenesis of plant organs and is modulated by hormonal and developmental signals, yet little is known about signaling in this fundamental process in plants. In contrast to tip-growing cells, such as pollen tubes and root hairs, cells in developing tissues are thought to expand by diffuse growth. In this study, we provide evidence that these cells expand in two phases with distinct mechanisms. In the early phase, cell expansion can occur in both longitudinal and radial or lateral directions and is mediated by Rop GTPase signaling, a mechanism known to control tip growth. The expression of a dominant-negative mutant for ROP2 (DN-rop2) inhibited polar cell expansion, whereas the expression of a constitutively active mutant (CA-rop2) caused isotropic expansion in the early phase. In the late phase, expansion occurs only in the longitudinal direction and is not affected by DN-rop2 or CA-rop2 expression. The transition from the early to the late phase coincides with the reorientation of cortical microtubules from random to transverse arrangements. Thus, cell expansion in the late phase is consistent with polar diffuse growth, in which polarity probably is defined by transverse cortical microtubules. We show that the direction of cell expansion in the early phase is associated with the localization of diffuse fine cortical F-actin in leaf epidermal cells. DN-rop2 expression specifically inhibited the formation of this F-actin, but not actin cables, whereas CA-rop2 expression caused delocalized distribution of this fine F-actin throughout the cell cortex. Furthermore, green fluorescent protein–ROP2 was localized preferentially to the cortical region of the cell, where expansion apparently occurs. These observations suggest that ROP2 control of the polar expansion of cells within tissues is analogous to the Rop control of tip growth and of tip-localized F-actin in pollen tubes and root hairs and that the tip growth mechanism also may modulate polar cell expansion in differentiating tissues.


Journal of Cell Biology | 2005

A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes

Ying Gu; Ying Fu; Peter E. Dowd; Shundai Li; Vanessa Vernoud; Simon Gilroy; Zhenbiao Yang

Tip growth in neuronal cells, plant cells, and fungal hyphae is known to require tip-localized Rho GTPase, calcium, and filamentous actin (F-actin), but how they interact with each other is unclear. The pollen tube is an exciting model to study spatiotemporal regulation of tip growth and F-actin dynamics. An Arabidopsis thaliana Rho family GTPase, ROP1, controls pollen tube growth by regulating apical F-actin dynamics. This paper shows that ROP1 activates two counteracting pathways involving the direct targets of tip-localized ROP1: RIC3 and RIC4. RIC4 promotes F-actin assembly, whereas RIC3 activates Ca2+ signaling that leads to F-actin disassembly. Overproduction or depletion of either RIC4 or RIC3 causes tip growth defects that are rescued by overproduction or depletion of RIC3 or RIC4, respectively. Thus, ROP1 controls actin dynamics and tip growth through a check and balance between the two pathways. The dual and antagonistic roles of this GTPase may provide a unifying mechanism by which Rho modulates various processes dependent on actin dynamics in eukaryotic cells.


Plant Physiology | 2004

Brassinosteroids Interact with Auxin to Promote Lateral Root Development in Arabidopsis

Fang Bao; Junjiang Shen; Shari R. Brady; Gloria K. Muday; Tadao Asami; Zhenbiao Yang

Plant hormone brassinosteroids (BRs) and auxin exert some similar physiological effects likely through their functional interaction, but the mechanism for this interaction is unknown. In this study, we show that BRs are required for lateral root development in Arabidopsis and that BRs act synergistically with auxin to promte lateral root formation. BR perception is required for the transgenic expression of the β-glucuronidase gene fused to a synthetic auxin-inducible promoter (DR5::GUS) in root tips, while exogenous BR promotes DR5::GUS expression in the root tips and the stele region proximal to the root tip. BR induction of both lateral root formation and DR5::GUS expression is suppressed by the auxin transport inhibitor N-(1-naphthyl) phthalamic acid. Importantly, BRs promote acropetal auxin transport (from the base to the tip) in the root. Our observations indicate that BRs regulate auxin transport, providing a novel mechanism for hormonal interactions in plants and supporting the hypothesis that BRs promote lateral root development by increasing acropetal auxin transport.


The Plant Cell | 1996

Localization of a Rho GTPase Implies a Role in Tip Growth and Movement of the Generative Cell in Pollen Tubes.

Yakang Lin; Yalai Wang; Jian-Kang Zhu; Zhenbiao Yang

The Rho family GTPases function as key molecular switches, controlling a variety of actin-dependent cellular processes, such as the establishment of cell polarity, cell morphogenesis, and movement in diverse eukaryotic organisms. A novel subfamily of Rho GTPases, Rop, has been identified in plants. Protein gel blot and RNA gel blot hybridization analyses indicated that one of these plant Rho GTPases, Rop1, is expressed predominantly in the male gametophyte (pollen and pollen tubes). Cell fractionation analysis of pollen tubes showed that Rop is partitioned into soluble and particulate fractions. The particulate Rop could be solubilized with detergents but not with salts, indicating that it is tightly bound to membranes. The membrane association appears to result from membrane anchoring via a geranylgeranyl group because an in vitro isoprenylation assay demonstrated that Rop1Ps is geranylgeranylated. Subcellular localization, using indirect immunofluorescence and confocal microscopy, showed that Rop is highly concentrated in the cortical region of the tube apex and in the periphery of the generative cell. The cortical Rop protein at the apex forms a gradient with decreasing concentration from tip to base and appears to be associated with the plasma membrane. These results suggest that the apical Rop GTPase may be involved in the signaling mechanism that controls the actin-dependent tip growth of pollen tubes. Localization of the Rop GTPase to the periphery of the generative cell is analogous to that of myosin, suggesting that the Rop GTPase plays an important role in the modulation of an actomyosin motor system involved in the movement of the generative cell.

Collaboration


Dive into the Zhenbiao Yang's collaboration.

Top Co-Authors

Avatar

Ying Fu

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Ying Gu

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

An Yan

University of California

View shared research outputs
Top Co-Authors

Avatar

Hai Li

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Nan Luo

University of California

View shared research outputs
Top Co-Authors

Avatar

Shundai Li

University of California

View shared research outputs
Top Co-Authors

Avatar

Tongda Xu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shingo Nagawa

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge