Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiří Henych is active.

Publication


Featured researches published by Jiří Henych.


Nanoscale | 2013

Strongly luminescent monolayered MoS2 prepared by effective ultrasound exfoliation

Václav Štengl; Jiří Henych

Intense ultrasound in a pressurized batch reactor was used for preparation of monolayered MoS2 nanosheets from natural mineral molybdenite. Exfoliation of bulk MoS2 using ultrasound is an attractive route to large-scale preparation of monolayered crystals. To evaluate the quality of delamination, methods like X-ray diffraction, Raman spectroscopy and microscopic techniques (TEM and AFM) were employed. From single- or few-layered products obtained from intense sonication, MoS2 quantum dots (MoSQDs) were prepared by a one-pot reaction by refluxing exfoliated nanosheets of MoS2 in ethylene glycol under atmospheric pressure. The synthesised MoSQDs were characterised by photoluminescence spectroscopy and laser-scattering particle size analysis. Our easy preparation leads to very strongly green luminescing quantum dots.


Nanoscale Research Letters | 2014

Ultrasound exfoliation of inorganic analogues of graphene

Václav Štengl; Jiří Henych; Michaela Slušná; Petra Ecorchard

High-intensity ultrasound exfoliation of a bulk-layered material is an attractive route for large-scale preparation of monolayers. The monolayer slices could potentially be prepared with a high yield (up to 100%) in a few minutes. Exfoliation of natural minerals (such as tungstenite and molybdenite) or bulk synthetic materials (including hexagonal boron nitride (h-BN), hexagonal boron carbon nitride (h-BCN), and graphitic carbon nitride (g-C3N4)) in liquids leads to the breakdown of the 3D graphitic structure into a 2D structure; the efficiency of this process is highly dependent upon the physical effects of the ultrasound. Atomic force microscopy (AFM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) were employed to verify the quality of the exfoliation. Herein, this new method of exfoliation with ultrasound assistance for application to mono- and bilayered materials in hydrophobic and hydrophilic environments is presented.


Photochemistry and Photobiology | 2013

Doping of TiO2–GO and TiO2–rGO with Noble Metals: Synthesis, Characterization and Photocatalytic Performance for Azo Dye Discoloration

Václav Štengl; Jiří Henych; Petr Vomáčka; Michaela Slušná

The nanocomposites of titania coupled with graphene oxide (GO) and reduced graphene oxide (rGO), respectively, were prepared by homogeneous hydrolysis with urea. Graphene was obtained by effect of high‐intensity cavitation field on natural graphite in the presence of strong aprotic solvents in pressurized ultrasonic reactor. The morphology of TiO2–GO and TiO2–rGO composites was assessed by scanning electron microscopy and atomic force microscopy. The nitrogen adsorption–desorption was used for determination of surface area (BET) and porosity. Raman and IR spectroscopy were used for qualitative analysis and diffuse reflectance spectroscopy was employed to estimate band‐gap energies. Further enhancement of the photocatalytic activity was attained by codoping of composites with noble metals—Au, Pd and Pt. The photocatalytic activity of TiO2–GO and TiO2–rGO were assessed by photocatalytic decomposition of Orange II dye in an aqueous slurry under UV and visible light irradiation. The photocatalytic activity of noble metals codoped samples was determined with decomposition of Reactive Black 5 azo dye.


Journal of Hazardous Materials | 2016

Cerium oxide for the destruction of chemical warfare agents: A comparison of synthetic routes

Pavel Janoš; Jiří Henych; Ondřej Pelant; Věra Pilařová; Luboš Vrtoch; Martin Kormunda; Karel Mazanec; Václav Štengl

Four different synthetic routes were used to prepare active forms of cerium oxide that are capable of destroying toxic organophosphates: a sol-gel process (via a citrate precursor), homogeneous hydrolysis and a precipitation/calcination procedure (via carbonate and oxalate precursors). The samples prepared via homogeneous hydrolysis with urea and the samples prepared via precipitation with ammonium bicarbonate (with subsequent calcination at 500°C in both cases) exhibited the highest degradation efficiencies towards the extremely dangerous nerve agents soman (O-pinacolyl methylphosphonofluoridate) and VX (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate) and the organophosphate pesticide parathion methyl. These samples were able to destroy more than 90% of the toxic compounds in less than 10 min. The high degradation efficiency of cerium oxide is related to its complex surface chemistry (presence of surface OH groups and surface non-stoichiometry) and to its nanocrystalline nature, which promotes the formation of crystal defects on which the decomposition of organophosphates proceeds through a nucleophilic substitution mechanism that is not dissimilar to the mechanism of enzymatic hydrolysis of organic phosphates by phosphotriesterase.


Journal of Colloid and Interface Science | 2016

Shape-controlled synthesis of Sn-doped CuO nanoparticles for catalytic degradation of Rhodamine B

Petr Vomáčka; Václav Štengl; Jiří Henych; Martin Kormunda

The uniform Sn-doped CuO nanoparticles were synthesized by a simple solution method at a low temperature. The prepared samples were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electron microscopy techniques (HRSEM, HRTEM, SAED, STEM and EDS elemental mapping), atomic force microscopy (AFM), UV/Vis spectroscopy, nitrogen physisorption (BET) and by evaluation of the catalytic activity on the degradation of Rhodamine B. The tin doping had a considerable influence on the morphology of CuO. The gradual narrowing of the particles morphology in the crystallographic [010] direction was observed with increasing the dopant concentration. The plate-like, rectangularsquare and rod-like CuO nanoparticles were obtained. The mechanism of a crystal growth of CuO associated with doping is proposed. The tin doping also affected the structural and optical properties of CuO. Increasing the amount of a dopant led to a red-shift of a band gap from 1.33 to 1.18eV. The incorporation of tin into the structure of copper oxide was confirmed by XRD and distribution of tin mapped by EDS analysis. The good catalytic properties of the as-prepared doped material were demonstrated by the enhanced catalytic removal of Rhodamine B in the presence of H2O2. The undoped CuO nanosheets reached only 24% efficiency in the removal of Rhodamine B within two hours. The best result exhibited CuO_050Sn sample containing 4at.% of tin and the degradation of Rhodamine B reached 99% within the same time. We have demonstrated a simple, scalable process for the preparation of catalytically very active Sn-doped CuO nanoparticles with varying properties.


Ultrasonics Sonochemistry | 2015

A green method of graphene preparation in an alkaline environment

Václav Štengl; Jiří Henych; Jana Bludská; Petra Ecorchard; Martin Kormunda

We present a new, simple, quick and ecologically friendly method of exfoliating graphite to produce graphene. The method is based on the intercalation of a permanganate M2MnO4 (M=K, Na, Li), which is formed by the reaction of a manganate MMnO4 with an alkali metal hydroxide MOH. The quality of exfoliation and the morphology were determined using X-ray photoelectron spectroscopy, X-ray diffraction and microscopic techniques, including transmission electron microscopy and atomic force microscopy. We observed that a stable graphene suspension could be prepared under strongly alkaline conditions in the presence of permanganate and ultrasound assistance. The use of only an alkaline environment for the direct preparation of graphene from graphite structures has not been previously described or applied. It was found that such a method of preparation leads to surprisingly high yields and a stable product for hydrophilic graphene applications.


Reviews of Environmental Contamination and Toxicology | 2016

Nanostructured Metal Oxides for Stoichiometric Degradation of Chemical Warfare Agents

Štengl; Jiří Henych; Pavel Janoš; Miroslav Skoumal

Metal oxides have very important applications in many areas of chemistry, physics and materials science; their properties are dependent on the method of preparation, the morphology and texture. Nanostructured metal oxides can exhibit unique characteristics unlike those of the bulk form depending on their morphology, with a high density of edges, corners and defect surfaces. In recent years, methods have been developed for the preparation of metal oxide powders with tunable control of the primary particle size as well as of a secondary particle size: the size of agglomerates of crystallites. One of the many ways to take advantage of unique properties of nanostructured oxide materials is stoichiometric degradation of chemical warfare agents (CWAs) and volatile organic compounds (VOC) pollutants on their surfaces.


Journal of Nanomaterials | 2016

h-BN-TiO 2 nanocomposite for photocatalytic applications

Václav Štengl; Jiří Henych; Michaela Slušná

h-BN-TiO2 nanocomposites were synthesized by the thermal hydrolysis of titanium peroxo-complexes in the presence of exfoliated h-BN. The bulk h-BN was prepared by annealing mixture of boric acid and urea, and high intensity ultrasound was used for its exfoliation. The prepared samples were characterized by X-ray powder diffraction (XRD), infrared spectroscopy, Raman spectroscopy, electron spin resonance (ESR), high resolution electron microscopy, BET surface area, and BJH porosity measurement. The UV-Vis diffuse reflectance spectroscopy was employed to estimate band-gap energies. The photoinduced charge on the surface of h-BN-TiO2 nanocomposites was visualized using electric force microscopy (EFM). The photocatalytic activity was determined by azo dyes Orange II and Reactive Black 5 photobleaching. The highest rate constant k = 0.0762 min-1 and 0.0164 min-1, under UV and visible light irradiation, respectively, showed sample denoted TiP050BN with moderate concentration of h-BN.


Advances in Materials Science and Engineering | 2015

Recovery of Cerium Dioxide from Spent Glass-Polishing Slurry and Its Utilization as a Reactive Sorbent for Fast Degradation of Toxic Organophosphates

Pavel Janoš; Pavel Kuráň; Jakub Ederer; Martin Šťastný; Luboš Vrtoch; Martin Pšenička; Jiří Henych; Karel Mazanec; Miroslav Skoumal

The recovery of cerium (and possibly other rare earth elements) from the spent glass-polishing slurries is rather difficult because of a high resistance of polishing-grade cerium oxide toward common digestion agents. It was shown that cerium may be extracted from the spent polishing slurries by leaching with strong mineral acids in the presence of reducing agents; the solution may be used directly for the preparation of a ceria-based reactive sorbent. A mixture of concentrated nitric acid and hydrogen peroxide was effective in the digestion of partially dewatered glass-polishing slurry. After the removal of undissolved particles, cerous carbonate was precipitated by gaseous NH3 and CO2. Cerium oxide was prepared by a thermal decomposition of the carbonate precursor in an open crucible and tested as reactive sorbent for the degradation of highly toxic organophosphate compounds. The samples annealed at the optimal temperature of approximately 400°C exhibited a good degradation efficiency toward the organophosphate pesticide fenchlorphos and the nerve agents soman and VX. The extraction/precipitation procedure recovers approximately 70% of cerium oxide from the spent polishing slurry. The presence of minor amounts of lanthanum does not disturb the degradation efficiency.


Journal of Nanomaterials | 2012

Impact of Ge 4+ ion as structural dopant of Ti 4+ in anatase: crystallographic translation, photocatalytic behavior, and efficiency under UV and VIS irradiation

Václav Štengl; Tomáš Grygar; Jana Velická; Jiří Henych; Snejana Bakardjieva

Nanometric particles of germanium-doped TiO2 were prepared by homogeneous hydrolysis of TiOSO4 and GeCl4 in an aqueous solution using urea as the precipitation agent. Structural evolution during heating of these starting Ge-Ti oxide powders was studied by X-ray diffraction (XRD) and high-temperature X-ray powder diffraction (HTXRD). The morphology and microstructure changes were monitored by means of scanning electron microscopy (SEM), Raman and infrared spectroscopy (IR), specific surface area (BET), and porosity determination (BJH). The photocatalytic activity of all samples was determined by decomposition of Orange II dye under irradiation at 365nm and 400 nm. Moderate doping with concentration upto value 2.05wt.% positively influences azo dye degradation under UV and Vis light. Further improvement cannot be achieved by higher Ge doping. Effect of the annealing (200, 400, and 700°C) on photocatalysis and other properties has been assessed.

Collaboration


Dive into the Jiří Henych's collaboration.

Top Co-Authors

Avatar

Václav Štengl

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tanya Tsoncheva

Bulgarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Petr Vomáčka

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Daniela Kovacheva

Bulgarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Momtchil Dimitrov

Bulgarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Tomáš Grygar

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Kormunda

University of West Bohemia

View shared research outputs
Top Co-Authors

Avatar

Snejana Bakardjieva

Academy of Sciences of the Czech Republic

View shared research outputs
Researchain Logo
Decentralizing Knowledge