Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Václav Štengl is active.

Publication


Featured researches published by Václav Štengl.


Journal of Materials Chemistry | 2006

Transformation of brookite-type TiO2 nanocrystals to rutile: correlation between microstructure and photoactivity

Snejana Bakardjieva; Václav Štengl; Lórant Szatmáry; Jan Šubrt; Jozef Lukáč; Nataliya Murafa; Daniel Niznansky; Karel Cizek; Jaromir Jirkovsky; Nadia Petrova

Nanometric particles of pure brookite TiO2 were synthesized by modified thermolysis of reactant solutions containing titania powder, HCl, urea and PEG 10000. Unique flower-like brookite agglomerates with an average diameter of ∼400–450 nm composed of single brookite nanocrystals of ∼4–5 nm were obtained at 105 °C. The brookite → rutile transformation has been studied and TiO2 mixtures with variable amount of anatase, brookite and rutile polymorphs at different temperatures (from 200 to 800 °C) were obtained. High resolution transmission electron microscopy (HRTEM), electron diffraction pattern and BET/BJH analyses were used to characterize the phase assemblages, crystallite size and pore volume of the pure-phase brookite and TiO2 mixtures. In order to understand the metastable–stable TiO2 phase transformation X-ray powder diffraction (XRD) was performed. The photoactivity of pure brookite and TiO2 powders with different compositions of the brookite–anatase–rutile and anatase–rutile polymorphs obtained during the transitions was examined by photocatalyzed degradation of 4-chlorophenols in aqueous solution. The titania sample having the highest catalytic activity was obtained at 500 °C, contained 3.2% brookite, 42.9% anatase and 53.9% rutile and is referred to as TiO[B])/500 .


Nanoscale | 2013

Strongly luminescent monolayered MoS2 prepared by effective ultrasound exfoliation

Václav Štengl; Jiří Henych

Intense ultrasound in a pressurized batch reactor was used for preparation of monolayered MoS2 nanosheets from natural mineral molybdenite. Exfoliation of bulk MoS2 using ultrasound is an attractive route to large-scale preparation of monolayered crystals. To evaluate the quality of delamination, methods like X-ray diffraction, Raman spectroscopy and microscopic techniques (TEM and AFM) were employed. From single- or few-layered products obtained from intense sonication, MoS2 quantum dots (MoSQDs) were prepared by a one-pot reaction by refluxing exfoliated nanosheets of MoS2 in ethylene glycol under atmospheric pressure. The synthesised MoSQDs were characterised by photoluminescence spectroscopy and laser-scattering particle size analysis. Our easy preparation leads to very strongly green luminescing quantum dots.


Chemistry Central Journal | 2013

TiO2-graphene oxide nanocomposite as advanced photocatalytic materials

Václav Štengl; Snejana Bakardjieva; Tomáš Grygar; Jana Bludská; Martin Kormunda

BackgroundGraphene oxide composites with photocatalysts may exhibit better properties than pure photocatalysts via improvement of their textural and electronic properties.ResultsTiO2-Graphene Oxide (TiO2 - GO) nanocomposite was prepared by thermal hydrolysis of suspension with graphene oxide (GO) nanosheets and titania peroxo-complex. The characterization of graphene oxide nanosheets was provided by using an atomic force microscope and Raman spectroscopy. The prepared nanocomposites samples were characterized by Brunauer–Emmett–Teller surface area and Barrett–Joiner–Halenda porosity, X-ray Diffraction, Infrared Spectroscopy, Raman Spectroscopy and Transmission Electron Microscopy. UV/VIS diffuse reflectance spectroscopy was employed to estimate band-gap energies. From the TiO2 - GO samples, a 300 μm thin layer on a piece of glass 10×15 cm was created. The photocatalytic activity of the prepared layers was assessed from the kinetics of the photocatalytic degradation of butane in the gas phase.ConclusionsThe best photocatalytic activity under UV was observed for sample denoted TiGO_100 (k = 0.03012 h-1), while sample labeled TiGO_075 (k = 0.00774 h-1) demonstrated the best activity under visible light.


Journal of Rare Earths | 2014

Cerium dioxide as a new reactive sorbent for fast degradation of parathion methyl and some other organophosphates

Pavel Janoš; Pavel Kuran; Martin Kormunda; Václav Štengl; Tomáš Grygar; Marek Došek; Martin Stastny; Jakub Ederer; Vera Pilarova; Luboš Vrtoch

Abstract Cerium dioxide was used for the first time as reactive sorbent for the degradation of the organophosphate pesticides parathion methyl, chlorpyrifos, dichlofenthion, fenchlorphos, and prothiofos, as well as of some chemical warfare agents-nerve gases soman and O -ethyl S -[2-(diisopropylamino) ethyl] methylphosphonothioate (VX). CeO 2 specimens were prepared by calcination of basic cerous carbonate obtained by precipitation from an aqueous solution. The CeO 2 samples containing certain amounts (1 wt.%-5 wt.%) of the neighboring lanthanides (La, Pr, Nd) were prepared in a similar way from pure lanthanide salts. It was shown that ceria accelerated markedly the decomposition of parathion methyl causing the cleavage of the P-O-aryl bond in the pesticide molecule. A similar reaction mechanism was proposed for the degradation of other organophosphate pesticides and nerve agents. The degradation times (reaction half-times) were in an order of minutes in the presence of CeO 2 , compared to hours or days under common environmental conditions. The reaction in suitable organic solvents allowed conversions of about 90% for parathion methyl loading of 20 mg pesticide/g CeO 2 within 2 h with a reactant half-life in the order of 0.1 min. The key parameter governing the degradation efficiency of CeO 2 was the temperature during calcination. At optimum calcination temperature (about 773.15 K), the produced ceria retained a sufficiently high surface area, and attained an optimum degree of crystallinity (related to a number of crystal defects, and thus potential reactive sites). The presence of other lanthanides somewhat decreased the reaction rate, but this effect was not detrimental and permitted the possible use of chemically impure ceria as a reactive sorbent. A fast organophosphate degradation was demonstrated not only in non-polar solvents (such as heptane), but also in polar aprotic solvents (acetonitrile, acetone) that are miscible with water. This opens new possibilities for designing more versatile decontamination strategies. The cleavage of phosphate ester bonds is of a great importance not only for the degradation of dangerous chemicals (chemical weapons, pesticides), but also for interactions of ceria (especially the nano-sized one) in biologically relevant systems.


ACS Applied Materials & Interfaces | 2010

Photocatalytic Activity of Boron-Modified Titania under UV and Visible-Light Illumination

Václav Štengl; Vendula Houšková; Snejana Bakardjieva; Nataliya Murafa

Nanosized boron(III) oxide-doped titania was prepared by homogeneous hydrolysis of titanium oxo-sulfate with urea in aqueous solutions in the presence of amorphous boron. The prepared samples were annealing at 700 degrees C. The structure of as-prepared samples was characterized by X-ray powder diffraction (XRD) and selected area electron diffraction (SAED) and surface area (BET) and porosity determination (BJH). The morphology and microstructure characteristics were obtained by scanning electron microscopy (SEM) and high-resolution electron microscopy (HRTEM). The method of UV/vis diffuse reflectance spectroscopy was employed to estimate band gap energies of the boron-doped titania. The photoactivity of the prepared samples was assessed by the photocatalytic decomposition of Orange II dye in an aqueous slurry during irradiation at 365 and 400 nm wavelength. The prepared titania samples doped with boron(III) oxide showed better photocatalytic activity in comparison with the reference TiO(2) sample. These photocatalysts showed better photocatalytic performance under visible-light irradiation.


ACS Applied Materials & Interfaces | 2011

New Generation Photocatalysts: How Tungsten Influences the Nanostructure and Photocatalytic Activity of TiO2 in the UV and Visible Regions

Václav Štengl; Jana Velická; Monika Maříková; Tomáš Grygar

Tungsten-doped anatase was prepared by a thermal hydrolysis of aqueous solutions of peroxo complexes of titanium and tungsten. The synthesized samples included X-ray diffraction, high-resolution transmission electron microscopy, selected area electron diffraction, Raman spectroscopy, specific surface area, and porosity determination. W doping resulted in a decrease of the unit-cell volume of anatase at lower W contents and an increase at higher W contents. The position of the most intense Raman band of the E(g) mode (near 147 cm(-1)) also has a local minimum at medium-doped titania (1.1-3.6% W in titania). W doping increases the temperature of anatase-to-rutile transformation by about 100 °C compared with nondoped anatase. The photocatalytic activity of doped titania samples was determined by decomposition of Orange II dye during irradiation at 365 and 400 nm. Specimens with moderate W doping (1.0-3.3% W) perform best: they enhance the corresponding reaction rates 10 times at 365 nm and 5 times at 400 nm, respectively, compared with pure titania obtained under the same set of synthesis conditions.


Nanoscale Research Letters | 2014

Ultrasound exfoliation of inorganic analogues of graphene

Václav Štengl; Jiří Henych; Michaela Slušná; Petra Ecorchard

High-intensity ultrasound exfoliation of a bulk-layered material is an attractive route for large-scale preparation of monolayers. The monolayer slices could potentially be prepared with a high yield (up to 100%) in a few minutes. Exfoliation of natural minerals (such as tungstenite and molybdenite) or bulk synthetic materials (including hexagonal boron nitride (h-BN), hexagonal boron carbon nitride (h-BCN), and graphitic carbon nitride (g-C3N4)) in liquids leads to the breakdown of the 3D graphitic structure into a 2D structure; the efficiency of this process is highly dependent upon the physical effects of the ultrasound. Atomic force microscopy (AFM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) were employed to verify the quality of the exfoliation. Herein, this new method of exfoliation with ultrasound assistance for application to mono- and bilayered materials in hydrophobic and hydrophilic environments is presented.


Journal of Hazardous Materials | 2011

Sulphur mustard degradation on zirconium doped Ti-Fe oxides.

Václav Štengl; Tomáš Grygar; František Opluštil; Tomáš Němec

Zirconium doped mixed nanodispersive oxides of Ti and Fe were prepared by homogeneous hydrolysis of sulphate salts with urea in aqueous solutions. Synthesized nanodispersive metal oxide hydroxides were characterised as the Brunauer-Emmett-Teller (BET) surface area and Barrett-Joiner-Halenda porosity (BJH), X-ray diffraction (XRD), infrared (IR) spectroscopy, scanning electron microscopy (SEM) with energy-dispersive X-ray (EDX) microanalysis, and acid-base titration. These oxides were taken for an experimental evaluation of their reactivity with sulphur mustard (chemical warfare agent HD or bis(2-chloroethyl)sulphide). The presence of Zr(4+) dopant tends to increase both the surface area and the surface hydroxylation of the resulting doped oxides in such a manner that it can contribute to enabling the substrate adsorption at the oxide surface and thus accelerate the rate of degradation of warfare agents. The addition of Zr(4+) to the hydrolysis of ferric sulphate with urea shifts the reaction route and promotes formation of goethite at the expense of ferrihydrite. We discovered that Zr(4+) doped oxo-hydroxides of Ti and Fe exhibit a higher degradation activity towards sulphur mustard than any other yet reported reactive sorbents. The reaction rate constant of the slower parallel reaction of the most efficient reactive sorbents is increased with the increasing amount of surface base sites.


Photochemistry and Photobiology | 2012

In3+-doped TiO2 and TiO2/In2S3 Nanocomposite for Photocatalytic and Stoichiometric Degradations

Václav Štengl; František Opluštil; Tomáš Němec

A novel In3+‐doped TiO2 and TiO2/In2S3 nanocomposites for photocatalytic degradation of environmental pollutants and stoichiometric degradation of warfare agents were prepared by a homogeneous hydrolysis with urea and thioacetamide, respectively. The prepared samples series TiInTAA were annealed at 600°C. The prepared samples were characterized by X‐ray powder diffraction, IR spectroscopy, Raman spectroscopy, specific surface area (BET) and porosity determination. The method of UV–Vis diffuse reflectance spectroscopy was employed to estimate band‐gap energies. The photocatalytic activity (PCA) was tested by degradation of Orange dye, whereas stoichiometric activity was studied by degradation of sulfur mustard. Incorporation of In3+ into titania lattice increases PCA of TiO2 in the visible light and increases stoichiometric decomposition of sulfur mustard against nondoped TiO2 as well. PCA of TiO2/In2S3 composite depends on the optimal ratio of TiO2:In2S3 in composite, while the activity for stoichiometric decomposition of sulfur mustards depends on the content of In2S3 in nanocomposite.


Journal of Hazardous Materials | 2012

Ge4+ doped TiO2 for stoichiometric degradation of warfare agents.

Václav Štengl; Tomáš Grygar; František Opluštil; Tomáš Němec

Germanium doped TiO(2) was prepared by homogeneous hydrolysis of aqueous solutions of GeCl(4) and TiOSO(4) with urea. The synthesized samples were characterized by X-ray diffraction, scanning electron microscopy, EDS analysis, specific surface area (BET) and porosity determination (BJH). Ge(4+) doping increases surface area and content of amorphous phase in prepared samples. These oxides were used in an experimental evaluation of their reactivity with chemical warfare agent, sulphur mustard, soman and agent VX. Ge(4+) doping worsens sulphur mustard degradation and improves soman and agent VX degradation. The best degree of removal (degradation), 100% of soman, 99% of agent VX and 95% of sulphur mustard, is achieved with sample with 2 wt.% of germanium.

Collaboration


Dive into the Václav Štengl's collaboration.

Top Co-Authors

Avatar

Snejana Bakardjieva

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Jiří Henych

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Jan Šubrt

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Nataliya Murafa

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Tomáš Grygar

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pavel Ctibor

Czech Technical University in Prague

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge