Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiri Simunek is active.

Publication


Featured researches published by Jiri Simunek.


Water Research | 2013

Sensitivity of the transport and retention of stabilized silver nanoparticles to physicochemical factors

Yan Liang; Scott A. Bradford; Jiri Simunek; Harry Vereecken; Erwin Klumpp

Saturated sand-packed column experiments were conducted to investigate the influence of physicochemical factors on the transport and retention of surfactant stabilized silver nanoparticles (AgNPs). The normalized concentration in breakthrough curves (BTCs) of AgNPs increased with a decrease in solution ionic strength (IS), and an increase in water velocity, sand grain size, and input concentration (Co). In contrast to conventional filtration theory, retention profiles (RPs) for AgNPs exhibited uniform, nonmonotonic, or hyperexponential shapes that were sensitive to physicochemical conditions. The experimental BTCs and RPs with uniform or hyperexponential shape were well described using a numerical model that considers time- and depth-dependent retention. The simulated maximum retained concentration on the solid phase (Smax) and the retention rate coefficient (k1) increased with IS and as the grain size and/or Co decreased. The RPs were more hyperexponential in finer textured sand and at lower Co because of their higher values of Smax. Conversely, RPs were nonmonotonic or uniform at higher Co and in coarser sand that had lower values of Smax, and tended to exhibit higher peak concentrations in the RPs at lower velocities and at higher solution IS. These observations indicate that uniform and nonmonotonic RPs occurred under conditions when Smax was approaching filled conditions. Nonmonotonic RPs had peak concentrations at greater distances in the presence of excess amounts of surfactant, suggesting that competition between AgNPs and surfactant diminished Smax close to the column inlet. The sensitivity of the nonmonotonic RPs to IS and velocity in coarser textured sand indicates that AgNPs were partially interacting in a secondary minimum. However, elimination of the secondary minimum only produced recovery of a small portion (<10%) of the retained AgNPs. These results imply that AgNPs were largely irreversibly interacting in a primary minimum associated with microscopic heterogeneity.


Environmental Science & Technology | 2013

Retention and Remobilization of Stabilized Silver Nanoparticles in an Undisturbed Loamy Sand Soil

Yan Liang; Scott A. Bradford; Jiri Simunek; Marc Heggen; Harry Vereecken; Erwin Klumpp

Column experiments were conducted with undisturbed loamy sand soil under unsaturated conditions (around 90% saturation degree) to investigate the retention of surfactant stabilized silver nanoparticles (AgNPs) with various input concentration (Co), flow velocity, and ionic strength (IS), and the remobilization of AgNPs by changing the cation type and IS. The mobility of AgNPs in soil was enhanced with decreasing solution IS, increasing flow rate and input concentration. Significant retardation of AgNP breakthrough and hyperexponential retention profiles (RPs) were observed in almost all the transport experiments. The retention of AgNPs was successfully analyzed using a numerical model that accounted for time- and depth-dependent retention. The simulated retention rate coefficient (k1) and maximum retained concentration on the solid phase (Smax) increased with increasing IS and decreasing Co. The high k1 resulted in retarded breakthrough curves (BTCs) until Smax was filled and then high effluent concentrations were obtained. Hyperexponential RPs were likely caused by the hydrodynamics at the column inlet which produced a concentrated AgNP flux to the solid surface. Higher IS and lower Co produced more hyperexponential RPs because of larger values of Smax. Retention of AgNPs was much more pronounced in the presence of Ca(2+) than K(+) at the same IS, and the amount of AgNP released with a reduction in IS was larger for K(+) than Ca(2+) systems. These stronger AgNP interactions in the presence of Ca(2+) were attributed to cation bridging. Further release of AgNPs and clay from the soil was induced by cation exchange (K(+) for Ca(2+)) that reduced the bridging interaction and IS reduction that expanded the electrical double layer. Transmission electron microscopy, energy-dispersive X-ray spectroscopy, and correlations between released soil colloids and AgNPs indicated that some of the released AgNPs were associated with the released clay fraction.


Environmental Science & Technology | 2010

Hysteresis of colloid retention and release in saturated porous media during transients in solution chemistry.

Saeed Torkzaban; Hyunjung Kim; Jiri Simunek; Scott A. Bradford

Saturated packed column and micromodel transport studies were conducted to gain insight on mechanisms of colloid retention and release under unfavorable attachment conditions. The initial deposition of colloids in porous media was found to be a strongly coupled process that depended on solution chemistry and pore space geometry. During steady state chemical conditions, colloid deposition was not a readily reversible process, and micromodel photos indicated that colloids were immobilized in the presence of fluid drag. Upon stepwise reduction in eluting solution ionic strength (IS), a sharp release of colloids occurred in each step which indicates that colloid retention depends on a balance of applied (hydrodynamic) and resisting (adhesive) torques which varied with pore space geometry, surface roughness, and interaction energy. When the eluting fluid IS was reduced to deionized water, the final retention locations occurred near grain-grain contacts, and colloid aggregation was sometimes observed in micromodel experiments. Significant amounts of colloid retention hysteresis with IS were observed in the column experiments, and it depended on the porous medium (glass beads compared with sand), the colloid size (1.1 and 0.5 mum), and on the initial deposition IS. These observations were attributed to weak adhesive interactions that depended on the double layer thickness (e.g., the depth of the secondary minimum and/or nanoscale heterogeneity), colloid mass transfer on the solid phase to regions where the torque and force balances were favorable for retention, the number and extent of grain-grain contacts, and surface roughness.


Chemosphere | 2009

Dissolution and transport of 2,4-DNT and 2,6-DNT from M1 propellant in soil

Katerina Dontsova; Judith C. Pennington; Charolett Hayes; Jiri Simunek; Clint Williford

Live-fire training exercises can result in particulate propellant contamination on military training ranges and can potentially contaminate ground water. This study was conducted to evaluate dissolution of the 2,4-dinitrotoluene (2,4-DNT) and 2,6-dinitrotoluene (2,6-DNT) from the propellant formulation, M1 (87.6% nitrocellulose, 7.3% 2,4-DNT, 0.57% 2,6-DNT, 1.06% diphenylamine, 3.48% dibutyl phthalate) and their subsequent transport in soil. Batch dissolution studies were followed by saturated column transport experiments. Neat, dissolved 2,4-DNT, and M1 in solid and dissolved forms were used as influent to columns filled with Plymouth loamy sand (mesic, coated Typic Quartzipsamments) from Camp Edwards, MA. Dissolution rates and other fate and transport parameters were determined using the HYDRUS-1D code. M1 dissolution was limited by DNT diffusion from the interior of the pellet, resulting in an exponential decrease in dissolution rate with time. The HYDRUS-1D model accurately described release and transport of 2,4- and 2,6-DNT from M1 propellant. Dissolution rates for M1 in the stirred reactor and column studies were similar, indicating that batch dissolution rates are potentially useful to represent field conditions.


Journal of Contaminant Hydrology | 2015

Equilibrium and kinetic models for colloid release under transient solution chemistry conditions.

Scott A. Bradford; Saeed Torkzaban; Feike J. Leij; Jiri Simunek

We present continuum models to describe colloid release in the subsurface during transient physicochemical conditions. Our modeling approach relates the amount of colloid release to changes in the fraction of the solid surface area that contributes to retention. Equilibrium, kinetic, equilibrium and kinetic, and two-site kinetic models were developed to describe various rates of colloid release. These models were subsequently applied to experimental colloid release datasets to investigate the influence of variations in ionic strength (IS), pH, cation exchange, colloid size, and water velocity on release. Various combinations of equilibrium and/or kinetic release models were needed to describe the experimental data depending on the transient conditions and colloid type. Release of Escherichia coli D21g was promoted by a decrease in solution IS and an increase in pH, similar to expected trends for a reduction in the secondary minimum and nanoscale chemical heterogeneity. The retention and release of 20nm carboxyl modified latex nanoparticles (NPs) were demonstrated to be more sensitive to the presence of Ca(2+) than D21g. Specifically, retention of NPs was greater than D21g in the presence of 2mM CaCl2 solution, and release of NPs only occurred after exchange of Ca(2+) by Na(+) and then a reduction in the solution IS. These findings highlight the limitations of conventional interaction energy calculations to describe colloid retention and release, and point to the need to consider other interactions (e.g., Born, steric, and/or hydration forces) and/or nanoscale heterogeneity. Temporal changes in the water velocity did not have a large influence on the release of D21g for the examined conditions. This insensitivity was likely due to factors that reduce the applied hydrodynamic torque and/or increase the resisting adhesive torque; e.g., macroscopic roughness and grain-grain contacts. Our analysis and models improve our understanding and ability to describe the amounts and rates of colloid release and indicate that episodic colloid transport is expected under transient physicochemical conditions.


Environmental Science and Pollution Research | 2002

Simulation of soil hydrology and establishment of a nitrogen budget of a mountain forest.

Robert Jandl; Hannes Spögler; Jiri Simunek; Lee K. Heng

The water fluxes through the mountainous forest ecosystem ‘Mühleggerköpfl’ were simulated by means of the mechanistic soil physical model Hydrus ID. The objective was to set up a nitrogen budget in order to decide if the ecosystem accumulates nitrogen or if nitrogen leaks from the site. The simulated annual loss of N by percolation ranges between 0.4 and 1 g N m−2 yr− and is smaller than the annual input by bulk and occult deposition, which combines to approx 1.2–1.5 g N m− yr−. Obviously the forest soil presently accumulates N. With an N input-rate exceeding the N output, the operationally defined status of N saturation is not yet reached. Comparing the magnitude of the N pool in the soil (several kg N m−2) with the rate of the annual increase (a few g N m−2yr−1), the process of N saturation is apparently slow.


Environmental Science & Technology | 2014

Release of E. coli D21g with transients in water content

Yusong Wang; Scott A. Bradford; Jiri Simunek

Transients in water content are well-known to mobilize microorganisms that are retained in the vadose zone. However, there is no consensus on the relative importance of drainage and imbibition events on microorganism release. To overcome this limitation, we have systematically studied the release of Escherichia coli D21g during cycles of drainage and imbibition under various solution chemistry and initial conditions. Results from these column studies revealed the influence of imbibition and drainage on D21g release. In particular, imbibition efficiently released cells from the air-water interface (AWI) that were initially retained under steady-state unsaturated conditions by expansion of water films and destruction of the AWI. Conversely, significant release and transport of cells during drainage only occurred below a critical water saturation (water film thickness). In this case, a fraction of the cells that were initially retained on the solid-water interface (SWI) partitioned into the mobile aqueous phase and the AWI as the receding water film thickness decreased during drainage. The efficiency of cell release from the SWI during drainage was much less than for the AWI during imbibition. Cycles of drainage and imbibition removed cells from the SWI and the AWI, respectively. However, the peak concentration and amount of cells that were released increased with the number of retained cells and the amount of drainage and imbibition, and decreased with the number of drainage and imbibition cycles. Release of cells during drainage and imbibition was found to be more pronounced in the presence of a weak secondary minimum when the ionic strength (IS) was 5 mM NaCl. Increases in the solution IS decreased the influence of water transients on release, especially during drainage. Complete recovery of the retained cells could be achieved using both IS reduction and cycles of drainage and imbibition, even when the cells were retained under favorable attachment conditions. In general, cell release was more pronounced with transients in water content than transients in IS when the IS ≥ 5 mM.


Journal of Environmental Quality | 2005

Sorption, Mobility, and Transformation of Estrogenic Hormones in Natural Soil

Francis X. M. Casey; Jiri Simunek; Jaehoon Lee; Gerald L. Larsen; Heldur Hakk


Archive | 2010

Soil Physics with HYDRUS: Modeling and Applications

David E. Radcliffe; Jiri Simunek


Agricultural Water Management | 2010

Numerical simulations of water movement in a subsurface drip irrigation system under field and laboratory conditions using HYDRUS-2D

Maziar M. Kandelous; Jiri Simunek

Collaboration


Dive into the Jiri Simunek's collaboration.

Top Co-Authors

Avatar

Scott A. Bradford

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Saeed Torkzaban

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Jan W. Hopmans

University of California

View shared research outputs
Top Co-Authors

Avatar

Hyunjung Kim

Chonbuk National University

View shared research outputs
Top Co-Authors

Avatar

Clint Williford

University of Mississippi

View shared research outputs
Top Co-Authors

Avatar

James H. Lever

Cold Regions Research and Engineering Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Judith C. Pennington

Engineer Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

Marianne E. Walsh

Cold Regions Research and Engineering Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge