Katerina Dontsova
University of Arizona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katerina Dontsova.
Water Resources Research | 1997
M. A. Nearing; L. D. Norton; D. A. Bulgakov; G. A. Larionov; L. T. West; Katerina Dontsova
Rills often act as sediment sources and the dominant sediment and water transport mechanism for hillslopes. Six experiments were conducted on two soils and a uniform sand using three experimental methodologies. The results of this study challenge the assumption often used in hydrologic and erosion models that relationships derived for sheet flow or larger channel flow are applicable to actively eroding rills. Velocity did not vary with slope, and Reynolds number was not a consistent predictor of hydraulic friction. This result was due to interactions of slope gradient, flow rate, erosion, and the formation of rill roughness, bed structures, and head cuts. A relationship for rill flow velocities was proposed. Stream power was found to be a consistent and appropriate predictor for unit sediment load for the entire data set, while other hydraulic variables were not. The data for stream power and sediment load fit the form of a logistic curve (r2 = 0.93), which is promising relative to recently proposed erosion models which are based on probabilistic particle threshold theory.
Environmental Toxicology and Chemistry | 2008
Alan J. Kennedy; Matthew S. Hull; Jeffery A. Steevens; Katerina Dontsova; Mark A. Chappell; Jonas C. Gunter; Charles A. Weiss
Carbon nanotubes (NTs) may be among the most useful engineered nanomaterials for structural applications but could be difficult to study in ecotoxicological evaluations using existing tools relative to nanomaterials with a lower aspect ratio. Whereas the hydrophobicity and van der Waals interactions of NTs may suggest aggregation and sedimentation in aquatic systems, consideration regarding how engineered surface modifications influence their environmental fate and toxicology is needed. Surface modifications (e.g., functional groups and coatings) are intended to create conditions to make NTs dispersible in aqueous suspension, as required for some applications. In the present study, column stability and settling experiments indicated that raw, multiwalled NTs (MWNTs) settled more rapidly than carbon black and activated carbon particles, suggesting sediment as the ultimate repository. The presence of functional groups, however, slowed the settling of MWNTs (increasing order of stability: hydroxyl > carboxyl > raw), especially in combination with natural organic matter (NOM). Stabilized MWNTs in high concentrations of NOM provided relevance for water transport and toxicity studies. Aqueous exposures to raw MWNTs decreased Ceriodaphnia dubia viability, but such effects were not observed during exposure to functionalized MWNTs (> 80 mg/L). Sediment exposures of the amphipods Leptocheirus plumulosus and Hyalella azteca to different sizes of sediment-borne carbon particles at high concentration indicated mortality increased as particle size decreased, although raw MWNTs induced lower mortality (median lethal concentration [LC50], 50 to >264 g/kg) than carbon black (LC50, 18-40 g/kg) and activated carbon (LC50, 12-29 g/kg). Our findings stress that it may be inappropriate to classify all NTs into one category in terms of their environmental regulation.
Geobiology | 2011
Susan L. Brantley; J. P. Megonigal; Frederick N. Scatena; Zsuzsanna Balogh-Brunstad; Rebecca T. Barnes; Mary Ann Bruns; P. Van Cappellen; Katerina Dontsova; Hilairy E. Hartnett; Anthony S. Hartshorn; Arjun M. Heimsath; Elizabeth M. Herndon; Lixin Jin; C. K. Keller; Jonathan R. Leake; William H. McDowell; F. C. Meinzer; T. J. Mozdzer; Steven T. Petsch; J. Pett-Ridge; Kurt S. Pregitzer; Peter A. Raymond; Clifford S. Riebe; K. Shumaker; A. Sutton-Grier; R. Walter; Kyungsoo Yoo
Critical Zone (CZ) research investigates the chemical, physical, and biological processes that modulate the Earths surface. Here, we advance 12 hypotheses that must be tested to improve our understanding of the CZ: (1) Solar-to-chemical conversion of energy by plants regulates flows of carbon, water, and nutrients through plant-microbe soil networks, thereby controlling the location and extent of biological weathering. (2) Biological stoichiometry drives changes in mineral stoichiometry and distribution through weathering. (3) On landscapes experiencing little erosion, biology drives weathering during initial succession, whereas weathering drives biology over the long term. (4) In eroding landscapes, weathering-front advance at depth is coupled to surface denudation via biotic processes. (5) Biology shapes the topography of the Critical Zone. (6) The impact of climate forcing on denudation rates in natural systems can be predicted from models incorporating biogeochemical reaction rates and geomorphological transport laws. (7) Rising global temperatures will increase carbon losses from the Critical Zone. (8) Rising atmospheric P(CO2) will increase rates and extents of mineral weathering in soils. (9) Riverine solute fluxes will respond to changes in climate primarily due to changes in water fluxes and secondarily through changes in biologically mediated weathering. (10) Land use change will impact Critical Zone processes and exports more than climate change. (11) In many severely altered settings, restoration of hydrological processes is possible in decades or less, whereas restoration of biodiversity and biogeochemical processes requires longer timescales. (12) Biogeochemical properties impart thresholds or tipping points beyond which rapid and irreversible losses of ecosystem health, function, and services can occur.
Environmental Pollution | 2009
Mark A. Chappell; Aaron J. George; Katerina Dontsova; Beth E. Porter; Cynthia L. Price; Pingheng Zhou; Eizi Morikawa; Alan J. Kennedy; Jeffery A. Steevens
Soil humic substances (HS) stabilize carbon nanotube (CNT) dispersions, a mechanism we hypothesized arose from the surfactive nature of HS. Experiments dispersing multi-walled CNT in solutions of dissolved Aldrich humic acid (HA) or water-extractable Catlin soil HS demonstrated enhanced stability at 150 and 300 mg L(-1) added Aldrich HA and Catlin HS, respectively, corresponding with decreased CNT mean particle diameter (MPD) and polydispersivity (PD) of 250 nm and 0.3 for Aldrich HA and 450 nm and 0.35 for Catlin HS. Analogous trends in MPD and PD were observed with addition of the surfactants Brij 35, Triton X-405, and SDS, corresponding to surfactant sorption maximum. NEXAFS characterization showed that Aldrich HA contained highly surfactive domains while Catlin soil possessed a mostly carbohydrate-based structure. This work demonstrates that the chemical structure of humic materials in natural waters is directly linked to their surfactive ability to disperse CNT released into the environment.
Applied and Environmental Microbiology | 2012
David R. Andrew; Robert R. Fitak; Adrian Munguia-Vega; Adriana Racolta; Vincent G. Martinson; Katerina Dontsova
ABSTRACT High-throughput, culture-independent surveys of bacterial and archaeal communities in soil have illuminated the importance of both edaphic and biotic influences on microbial diversity, yet few studies compare the relative importance of these factors. Here, we employ multiplexed pyrosequencing of the 16S rRNA gene to examine soil- and cactus-associated rhizosphere microbial communities of the Sonoran Desert and the artificial desert biome of the Biosphere2 research facility. The results of our replicate sampling approach show that microbial communities are shaped primarily by soil characteristics associated with geographic locations, while rhizosphere associations are secondary factors. We found little difference between rhizosphere communities of the ecologically similar saguaro (Carnegiea gigantea) and cardón (Pachycereus pringlei) cacti. Both rhizosphere and soil communities were dominated by the disproportionately abundant Crenarchaeota class Thermoprotei, which comprised 18.7% of 183,320 total pyrosequencing reads from a comparatively small number (1,337 or 3.7%) of the 36,162 total operational taxonomic units (OTUs). OTUs common to both soil and rhizosphere samples comprised the bulk of raw sequence reads, suggesting that the shared community of soil and rhizosphere microbes constitute common and abundant taxa, particularly in the bacterial phyla Proteobacteria, Actinobacteria, Planctomycetes, Firmicutes, Bacteroidetes, Chloroflexi, and Acidobacteria. The vast majority of OTUs, however, were rare and unique to either soil or rhizosphere communities and differed among locations dozens of kilometers apart. Several soil properties, particularly soil pH and carbon content, were significantly correlated with community diversity measurements. Our results highlight the importance of culture-independent approaches in surveying microbial communities of extreme environments.
Soil Science | 2002
Katerina Dontsova; L. Darrell Norton
Soils of the US Corn Belt often experience surface sealing, low infiltration, and erosion under rainfall, all of which result in economic loss. This study seeks to establish if high Mg content in these soils can have an adverse effect on soil structure, clay dispersability, water intake rate, and erosion as a result of the greater hydration radius of Mg compared with Ca. The study modified the Ca/Mg ratio from four soils of the Midwestern United States that varied in organic matter (OM) content, clay content, and clay mineralogy. After that, flocculation behavior of the clay fraction as well as infiltration and erosion during simulated rainfall were examined. The Ca/Mg ratio had a significant effect on clay dispersion and surface sealing: for all soil clays, a negative linear relationship (R2 = 0.82 to 0.99) was observed between the Mg percentage in solution and optical transmittance of clay suspension as an indicator of clay flocculation. In rainfall experiments, well structured Mg-treated soils registered final infiltration rates approximately half those of Ca-treated soils (2.7 mm h−1 vs. 5.7 mm h−1 for Blount loam soil and 16.8 mm h−1 vs. 31.1 mm h−1 for Catlin silt loam soil). Total infiltration decreased significantly as well. However, the effect was not significant for two less stable soils. Magnesium saturation increased final and total soil losses significantly for Blount loam and Fayette silty clay loam. Results indicate that high Mg can cause increased surface sealing and erosion in Midwestern soils.
Journal of Environmental Quality | 2009
Katerina Dontsova; Charolett Hayes; Judith C. Pennington; Beth E. Porter
Explosives in soils can present environmental problems for military installations. Fine, mobile particles represent the most reactive fraction of the soil and, therefore, are expected to adsorb explosives and potentially facilitate their transport. The objective of this study was to determine the relative significance of phyllosilicate clay, organic matter, and two forms of extractable iron in adsorption of 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by the colloidal water-dispersible clay (WDC) fraction of the soil. The WDC fraction of two mineral and one organic soil was separated and then treated to remove organic carbon (OC) and several forms of iron (Fe(o), oxalate extractable, and Fe(d), dithionite-citrate extractable). Adsorption coefficients were determined for whole soils, untreated, and treated WDC. For mineral soils, adsorption of TNT and RDX on the WDC was greater than on the whole soil. The presence of OC increased explosives sorption by WDC. When OC was removed, iron interfered with TNT sorption. In the presence of OC, removal of Fe(o) decreased RDX adsorption and increased TNT adsorption indicating different adsorption mechanisms. Organic carbon was a more significant indicator of explosives adsorption by WDC than clays or iron oxides and hydroxides. Therefore, OC is the most likely medium for facilitated transport of TNT and RDX.
Chemosphere | 2009
Katerina Dontsova; Judith C. Pennington; Charolett Hayes; Jiri Simunek; Clint Williford
Live-fire training exercises can result in particulate propellant contamination on military training ranges and can potentially contaminate ground water. This study was conducted to evaluate dissolution of the 2,4-dinitrotoluene (2,4-DNT) and 2,6-dinitrotoluene (2,6-DNT) from the propellant formulation, M1 (87.6% nitrocellulose, 7.3% 2,4-DNT, 0.57% 2,6-DNT, 1.06% diphenylamine, 3.48% dibutyl phthalate) and their subsequent transport in soil. Batch dissolution studies were followed by saturated column transport experiments. Neat, dissolved 2,4-DNT, and M1 in solid and dissolved forms were used as influent to columns filled with Plymouth loamy sand (mesic, coated Typic Quartzipsamments) from Camp Edwards, MA. Dissolution rates and other fate and transport parameters were determined using the HYDRUS-1D code. M1 dissolution was limited by DNT diffusion from the interior of the pellet, resulting in an exponential decrease in dissolution rate with time. The HYDRUS-1D model accurately described release and transport of 2,4- and 2,6-DNT from M1 propellant. Dissolution rates for M1 in the stirred reactor and column studies were similar, indicating that batch dissolution rates are potentially useful to represent field conditions.
Chemosphere | 2015
Susan Taylor; Eileen Park; Katherine Bullion; Katerina Dontsova
The US military fires live munitions during training. To save soldiers lives both during training and war, the military is developing insensitive munitions (IM) that minimize unintentional detonations. Some of the compounds in the IM formulation are, however, very soluble in water, raising environmental concerns about their fate and transport. We measured the dissolution of three of these IM formulations, IMX101, IMX104 and PAX21 using laboratory drip tests and studied the accompanying changes in particle structure using micro computed tomography. Our laboratory drip tests mimic conditions on training ranges, where spatially isolated particles of explosives scattered by partial detonations are dissolved by rainfall. We found that the constituents of these IM formulations dissolve sequentially and in the order predicted by their aqueous solubility. The order of magnitude differences in solubility among their constituents produce water solutions whose compositions and concentrations vary with time. For IMX101 and IMX104, that contain 3-nitro-1,2,4-triazol-5-one (NTO), the solutions also vary in pH. The good mass balances measured for the drip tests indicate that the formulations are not being photo-or bio-transformed under laboratory conditions.
Chemosphere | 2016
Noah Mark; Jennifer Arthur; Katerina Dontsova; Mark L. Brusseau; Susan Taylor
NTO (3-nitro-1,2,4-triazol-5-one) is one of the new explosive compounds used in insensitive munitions (IM) developed to replace traditional explosives, TNT and RDX. Data on NTO fate and transport is needed to determine its environmental behavior and potential for groundwater contamination. We conducted a series of kinetic and equilibrium batch experiments to characterize the fate of NTO in soils and the effect of soil geochemical properties on NTO-soil interactions. A set of experiments was also conducted using sterilized soils to evaluate the contribution of biodegradation to NTO attenuation. Measured pH values for NTO solutions decreased from 5.98 ± 0.13 to 3.50 ± 0.06 with increase in NTO concentration from 0.78 to 100 mg L(-1). Conversely, the pH of soil suspensions was not significantly affected by NTO in this concentration range. NTO experienced minimal adsorption, with measured adsorption coefficients being less than 1 cm(3) g(-1) for all studied soils. There was a highly significant inverse relationship between the measured NTO adsorption coefficients and soil pH (P = 0.00011), indicating the role of NTO and soil charge in adsorption processes. In kinetic experiments, 1st order transformation rate constant estimates ranged between 0.0004 h(-1) and 0.0142 h(-1) (equivalent to half-lives of 72 and 2 d, respectively), and correlated positively with organic carbon in the soil. Total attenuation of NTO was higher in untreated versus sterilized samples, suggesting that NTO was being biodegraded. The information presented herein can be used to help evaluate NTO potential for natural attenuation in soils.